Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Xenon outs WIMPs

02.05.2002


The UK’s Dark Matter Collaboration’s detector lab in Buolby Mine, Yorkshire.


Underneath the mine the WIMP detector is shielded from cosmic rays.


Dark-matter detector could pin down the Universe’s missing mass.

Researchers in London are building a cheap dark-matter detector that should be able to spot the exotic particles called WIMPs that are suspected of hiding most of the Universe’s missing mass1.

A prototype of the detector has just shown, for the first time, that it can spot something as close to a WIMP as it’s possible to produce in the lab.



WIMP stands for ’weakly interacting massive particle’. If WIMPs exist at all, they are thought to be hefty compared to the protons and neutrons in an atomic nucleus, but to barely interact with these components of normal matter.

Physicists believe that WIMPs make up as much as 99% of the total mass of the Universe. Astronomers can’t see this matter - hence its ’dark’ moniker - but they can see its gravitational effects on the way the stars and gas in galaxies rotate.

Even if billions of WIMPs are streaming through our bodies, they don’t have any effect. So WIMP-hunting could be a frustrating affair - like trying to fish for shrimps using the net from a football goal.

Several experiments are currently going to great lengths in the search for WIMPS. The problem is that detectors capable of WIMP-spotting will probably pick up other cosmic particles, too, swamping the WIMP signal. Cosmic rays - high-energy particles of normal matter from space - and radioactive emissions would also register.

To shield a WIMP-detector from cosmic rays, it must be placed deep underground. The UK Dark Matter Collaboration (UKDMC) houses detectors at a depth of 1,100 metres in a salt mine in Yorkshire. Another array in Italy is buried in a tunnel beneath a mountain.

It would all be a lot easier if a detector could differentiate between a cosmic ray and a WIMP. Last year Alex Howard and co-workers at Imperial College, London, proposed a new type of WIMP detector that could, in principle, do just that. The simple device contains liquid and gaseous xenon.

Howard’s team said that WIMPs entering the detector would occasionally collide with the nucleus of a xenon atom, causing a brief flash of light called a primary scintillation and removing an electron from the atom. An electric field would pull these electrons through the liquid into the xenon gas, where they would induce a secondary scintillation flash.

These two distinct events are crucial to WIMP identification. Other particles, such as cosmic rays, induce the same processes. But the brightness of the primary and secondary scintillations would be different for WIMPs, cosmic rays and other particles.

The closest thing to a WIMP that the researchers could use readily to test their device is a neutron. So they teamed up with Farhat Beg and colleagues, also at Imperial, who have developed a cheap and convenient table-top source of neutron beams called a plasma focus. Neutrons for scientific research are usually generated in nuclear reactors.

Using this source, the Imperial researchers show that the xenon detector spots and identifies neutrons, implying that it should be able to do the same with WIMPs. Indeed, neutrons give a signal so much like that of WIMPs that the remaining challenge will be to tell them apart.

"We’re now making a full-scale detector," Howard says. They hope to install it in the UKDMC mine in the next 12 to 18 months.

References

  1. Beg, F. N. et al. Table-top neutron source for characterization and calibration of dark matter detectors. Applied Physics Letters, 80, 3009 - 3011, (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>