Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D TV in the future made possible by artificial ‘wormholes’ International mathematicians create wormhole construction model

26.11.2007
Matti Lassas, Professor in Mathematics, who works in the Academy of Finland’s Centre of Excellence in Inverse Problems at Helsinki University of Technology, is part of the research team. The team’s method has been published in Physical Review Letters.

A wormhole is a concept used in the theory of relativity that describes shortcuts between two points running outside ordinary space. The term ‘wormhole’ comes from a playful assertion that a worm on an apple will get from one side to the other faster by burrowing through it than by crawling over the surface.

Previously, this same group of mathematicians studied the invisibility cloak theory. The invisibility cloak theory involves sheathing an object with an exotic material so that the light striking the sheathed object moves around it, thus making the object appear to be invisible when viewed from a distance.

The new proposal for the construction of wormholes corresponds with cloaking a pipe to make it invisible. In such a case, the front and back ends of the pipe would ostensibly be connected by an invisible tunnel. This artificial wormhole could be thought of in the same terms as the sleeve of Harry Potter’s invisibility cloak, through which objects could be passed from one end to the other without being seen.

Wormholes can be built using metamaterials

The new materials required to construct invisibility cloaks and artificial wormholes, called ‘metamaterials’ are currently the subject of active research. At present, they can, in practice, be constructed for only very limited applications within the range of visible light. A metamaterial designed for use in a microwave invisibility cloak was produced in 2006 at Duke University in the United States by a research team under the direction of Professor David Smith.

Similar materials are suitable for constructing artificial wormholes at microwave frequencies. The construction of a three-dimensional TV would require producing similar materials that work at visible light wavelengths, which, in turn, would require highly advanced nanotechnology. In the near future, artificial wormhole applications will be used in radar technologies and medical imaging.

For example, in MRI (Magnetic Resonance Imaging), which is used by hospitals for the imaging of patients, an artificial wormhole could be used as a shielding tunnel, through which instruments could be passed to the area being imaged without causing interference in the imaging itself.

Professor Matti Lassas’ partners in the development of artificial wormholes are Professors Allan Greenleaf of the University of Rochester, Yaroslav Kurylev of University College London and Gunther Uhlmann of the University of Washington.

Sources:
1. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Physical Review Letters 99, 183901
2. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Full-wave invisibility of active devices at all frequencies. Communications in Mathematical Physics 275 (2007), 749–789.
3. D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies, Science 10 November 2006: Vol. 314. no. 5801, pp. 977– 980

4. Light wormholes could wire space invisibly, Nature 450, 330–331 (2007), Published online 14 November 2007

Niko Rinta | alfa
Further information:
http://www.xpertsearch.fi
http://www.rni.helsinki.fi/~mjl/invisibility_publications.html
http://www.math.hut.fi/~mjlassas

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>