Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


3-D TV in the future made possible by artificial ‘wormholes’ International mathematicians create wormhole construction model

Matti Lassas, Professor in Mathematics, who works in the Academy of Finland’s Centre of Excellence in Inverse Problems at Helsinki University of Technology, is part of the research team. The team’s method has been published in Physical Review Letters.

A wormhole is a concept used in the theory of relativity that describes shortcuts between two points running outside ordinary space. The term ‘wormhole’ comes from a playful assertion that a worm on an apple will get from one side to the other faster by burrowing through it than by crawling over the surface.

Previously, this same group of mathematicians studied the invisibility cloak theory. The invisibility cloak theory involves sheathing an object with an exotic material so that the light striking the sheathed object moves around it, thus making the object appear to be invisible when viewed from a distance.

The new proposal for the construction of wormholes corresponds with cloaking a pipe to make it invisible. In such a case, the front and back ends of the pipe would ostensibly be connected by an invisible tunnel. This artificial wormhole could be thought of in the same terms as the sleeve of Harry Potter’s invisibility cloak, through which objects could be passed from one end to the other without being seen.

Wormholes can be built using metamaterials

The new materials required to construct invisibility cloaks and artificial wormholes, called ‘metamaterials’ are currently the subject of active research. At present, they can, in practice, be constructed for only very limited applications within the range of visible light. A metamaterial designed for use in a microwave invisibility cloak was produced in 2006 at Duke University in the United States by a research team under the direction of Professor David Smith.

Similar materials are suitable for constructing artificial wormholes at microwave frequencies. The construction of a three-dimensional TV would require producing similar materials that work at visible light wavelengths, which, in turn, would require highly advanced nanotechnology. In the near future, artificial wormhole applications will be used in radar technologies and medical imaging.

For example, in MRI (Magnetic Resonance Imaging), which is used by hospitals for the imaging of patients, an artificial wormhole could be used as a shielding tunnel, through which instruments could be passed to the area being imaged without causing interference in the imaging itself.

Professor Matti Lassas’ partners in the development of artificial wormholes are Professors Allan Greenleaf of the University of Rochester, Yaroslav Kurylev of University College London and Gunther Uhlmann of the University of Washington.

1. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Physical Review Letters 99, 183901
2. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Full-wave invisibility of active devices at all frequencies. Communications in Mathematical Physics 275 (2007), 749–789.
3. D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies, Science 10 November 2006: Vol. 314. no. 5801, pp. 977– 980

4. Light wormholes could wire space invisibly, Nature 450, 330–331 (2007), Published online 14 November 2007

Niko Rinta | alfa
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>