Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D TV in the future made possible by artificial ‘wormholes’ International mathematicians create wormhole construction model

26.11.2007
Matti Lassas, Professor in Mathematics, who works in the Academy of Finland’s Centre of Excellence in Inverse Problems at Helsinki University of Technology, is part of the research team. The team’s method has been published in Physical Review Letters.

A wormhole is a concept used in the theory of relativity that describes shortcuts between two points running outside ordinary space. The term ‘wormhole’ comes from a playful assertion that a worm on an apple will get from one side to the other faster by burrowing through it than by crawling over the surface.

Previously, this same group of mathematicians studied the invisibility cloak theory. The invisibility cloak theory involves sheathing an object with an exotic material so that the light striking the sheathed object moves around it, thus making the object appear to be invisible when viewed from a distance.

The new proposal for the construction of wormholes corresponds with cloaking a pipe to make it invisible. In such a case, the front and back ends of the pipe would ostensibly be connected by an invisible tunnel. This artificial wormhole could be thought of in the same terms as the sleeve of Harry Potter’s invisibility cloak, through which objects could be passed from one end to the other without being seen.

Wormholes can be built using metamaterials

The new materials required to construct invisibility cloaks and artificial wormholes, called ‘metamaterials’ are currently the subject of active research. At present, they can, in practice, be constructed for only very limited applications within the range of visible light. A metamaterial designed for use in a microwave invisibility cloak was produced in 2006 at Duke University in the United States by a research team under the direction of Professor David Smith.

Similar materials are suitable for constructing artificial wormholes at microwave frequencies. The construction of a three-dimensional TV would require producing similar materials that work at visible light wavelengths, which, in turn, would require highly advanced nanotechnology. In the near future, artificial wormhole applications will be used in radar technologies and medical imaging.

For example, in MRI (Magnetic Resonance Imaging), which is used by hospitals for the imaging of patients, an artificial wormhole could be used as a shielding tunnel, through which instruments could be passed to the area being imaged without causing interference in the imaging itself.

Professor Matti Lassas’ partners in the development of artificial wormholes are Professors Allan Greenleaf of the University of Rochester, Yaroslav Kurylev of University College London and Gunther Uhlmann of the University of Washington.

Sources:
1. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Physical Review Letters 99, 183901
2. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Full-wave invisibility of active devices at all frequencies. Communications in Mathematical Physics 275 (2007), 749–789.
3. D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies, Science 10 November 2006: Vol. 314. no. 5801, pp. 977– 980

4. Light wormholes could wire space invisibly, Nature 450, 330–331 (2007), Published online 14 November 2007

Niko Rinta | alfa
Further information:
http://www.xpertsearch.fi
http://www.rni.helsinki.fi/~mjl/invisibility_publications.html
http://www.math.hut.fi/~mjlassas

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>