Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D TV in the future made possible by artificial ‘wormholes’ International mathematicians create wormhole construction model

26.11.2007
Matti Lassas, Professor in Mathematics, who works in the Academy of Finland’s Centre of Excellence in Inverse Problems at Helsinki University of Technology, is part of the research team. The team’s method has been published in Physical Review Letters.

A wormhole is a concept used in the theory of relativity that describes shortcuts between two points running outside ordinary space. The term ‘wormhole’ comes from a playful assertion that a worm on an apple will get from one side to the other faster by burrowing through it than by crawling over the surface.

Previously, this same group of mathematicians studied the invisibility cloak theory. The invisibility cloak theory involves sheathing an object with an exotic material so that the light striking the sheathed object moves around it, thus making the object appear to be invisible when viewed from a distance.

The new proposal for the construction of wormholes corresponds with cloaking a pipe to make it invisible. In such a case, the front and back ends of the pipe would ostensibly be connected by an invisible tunnel. This artificial wormhole could be thought of in the same terms as the sleeve of Harry Potter’s invisibility cloak, through which objects could be passed from one end to the other without being seen.

Wormholes can be built using metamaterials

The new materials required to construct invisibility cloaks and artificial wormholes, called ‘metamaterials’ are currently the subject of active research. At present, they can, in practice, be constructed for only very limited applications within the range of visible light. A metamaterial designed for use in a microwave invisibility cloak was produced in 2006 at Duke University in the United States by a research team under the direction of Professor David Smith.

Similar materials are suitable for constructing artificial wormholes at microwave frequencies. The construction of a three-dimensional TV would require producing similar materials that work at visible light wavelengths, which, in turn, would require highly advanced nanotechnology. In the near future, artificial wormhole applications will be used in radar technologies and medical imaging.

For example, in MRI (Magnetic Resonance Imaging), which is used by hospitals for the imaging of patients, an artificial wormhole could be used as a shielding tunnel, through which instruments could be passed to the area being imaged without causing interference in the imaging itself.

Professor Matti Lassas’ partners in the development of artificial wormholes are Professors Allan Greenleaf of the University of Rochester, Yaroslav Kurylev of University College London and Gunther Uhlmann of the University of Washington.

Sources:
1. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Physical Review Letters 99, 183901
2. A. Greenleaf, Y. Kurylev, M. Lassas, G. Uhlmann: Full-wave invisibility of active devices at all frequencies. Communications in Mathematical Physics 275 (2007), 749–789.
3. D. Schurig et al. Metamaterial electromagnetic cloak at microwave frequencies, Science 10 November 2006: Vol. 314. no. 5801, pp. 977– 980

4. Light wormholes could wire space invisibly, Nature 450, 330–331 (2007), Published online 14 November 2007

Niko Rinta | alfa
Further information:
http://www.xpertsearch.fi
http://www.rni.helsinki.fi/~mjl/invisibility_publications.html
http://www.math.hut.fi/~mjlassas

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>