Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For the Earth and in Space: New Measuring Device for Monitoring Radiation

26.11.2007
In radiation protection the motto is: As little radiation as at all possible! Whoever wants to convert this to action, however, must first know how high the current radiation exposure actually is.

A new type of measuring device which can even register several types of radiation simultaneously, comes at the right time here. The physicist Dr. Marlies Luszik-Bhadra from the Physikalisch-Technische Bundesanstalt has, together with a partner from industry, developed a measuring device which can measure neutron- and photon radiation at the same time.

This personal dosimeter is a handy device which has a direct readout and an alarm function. It was possible by means of an invention - the essential principles of which have been patented - to make the dosimeter especially light and compact. For the technology transfer to the Synodys group, Marlies Luszik-Bhadra and her colleagues Wilfried Wendt and Mathias Weierganz receive this year's Technology Transfer Prize of the Industrie- und Handelskammer Braunschweig (Braunschweig Chamber of Commerce and Industry).

Natural neutron radiation surrounds us constantly - caused by the collision of high-energy cosmic particles with the molecules of our Earth's atmosphere. The intensity of this neutron radiation increases thereby with height and is especially relevant for flights, so that the radiation dose of flight personnel is continuously monitored. In contrast to this, humans themselves are responsible for the artifical neutron radiation on the ground. It is found in medical applications such as in tumour therapy, is used in non-destructive material testing, and is always present in nuclear power plants.

In general, however, neutron radiation seldom occurs alone. In most cases it is even the smaller component - above all in comparison to photon radiation (gamma radiation). A measuring device which includes both radiation components simultaneously is thus an ideal tool to monitor radiation-critical environments.

The personal dosimeter developed by Luszik-Bhadra, together with the Synodys group, is able to measure both radiation components in a handy and moreover very light device. It is the currently smallest dosimeter for mixed neutron/photon radiation fields. Compared to conventional laboratory electronics, the construction is smaller by a factor of 1000. The innovative idea thereby is in the interior construction of the detector. Whereas up to now, several semiconductor detectors have always been used for the construction of a neutron dosimeter, the new dosimeter gets by with a single detector surrounded by several thin absorber layers.

Hence the dosimeter is open to diverse fields of application: from medicine to nuclear technology and also to space-related assignments. For the crew of the International Space Station ISS - a place with especially intensive radiation - the measurement of the current radiation exposure is of particular importance. Up to now, passive dosimeters have been used here which can only be evaluated later on the Earth. A test application of the new direct-readout dosimeter is now being discussed with the European Space Agency ESA.

Erika Schow | alfa
Further information:
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2007/pitext/pi071123.htm

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>