Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light detector

02.05.2002


A novel prototype light meter has been developed by researchers in New York. Published today in the Institute of Physics journal, Measurement Science and Technology, this new retinal flux density meter will provide an affordable tool for measuring light at all levels and might ultimately lead to new standards to improve both energy efficiency and safety at night.



The retina in the eye detects light using cells called rods and cones. At high light levels, such as in daylight, the cones detect the light, but when there is very little light, such as on a moonless night, the eye uses the rods for vision. Rods are positioned away from the central axis of the retina which means that in very low light you have to look slightly to the side of something in order to see it. Current ways of measuring how much light is present, for setting standards in offices and schools for example, only relate to cones. This means that in low light levels, where both rods and cones are operating, measurements of how much light is present are inaccurate. This is reflected in the practical and inexpensive nature of current more primitive light meters.

Now researchers from the Lighting Researcher Center at Rensselaer Polytechnic Institute in Troy, New York have developed a new light meter that accurately characterises this shift from rod to cone vision and that is cheaper and less bulky than the very expensive and sensitive instruments that are only practical for use in a laboratory.


"Conventional light measurements are accurate when light levels are suitable for activities like reading and threading needles, but are not good in low light conditions when both rods and cones in the eye are detecting light," said Dr Van Derlofske. "For example, we use our peripheral vision, or rods and cones, in a dark alley to detect someone moving towards us from an oblique angle," he added.

This new light meter has an extra filter that can not only calculate the amount of light the eye`s cones would see, but also the amount of light that the rods would see. The device even approximates the optical properties of the eye, including shielding from the nose and brow and the optics of the cornea and lens.

"Although the prototype device is not yet available commercially, we estimate it would cost just half the price of the existing lab-based technology, and be much more accurate than the smaller portable devices currently on the market," said Dr Van Derlofske.

Alice Bows | alphagalileo

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>