Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to make the brightest supernova ever: Explode, collapse, repeat

19.11.2007
A supernova observed last year was so bright--about 100 times as luminous as a typical supernova--that it challenged the theoretical understanding of what causes supernovae.

But Stan Woosley, professor of astronomy and astrophysics at the University of California, Santa Cruz, had an idea that he thought could account for it--an extremely massive star that undergoes repeated explosions. When Woosley and two colleages worked out the detailed calculations for their model, the results matched the observations of the supernova known as SN 2006gy, the brightest ever recorded.

The researchers describe the model in a paper to be published in the November 15 issue of the journal Nature. Woosley's coauthors are Sergei Blinnikov, a visiting researcher at UCSC from the Institute of Theoretical and Experimental Physics in Moscow, and Alexander Heger of Los Alamos National Laboratory.

"This was a stupendously bright supernova, and we think we have the leading model to explain it. It's a new mechanism for making a supernova, and for doing it again and again in the same star," Woosley said. "We usually think of a supernova as the death of a star, but in this case the same star can blow up half a dozen times."

The first explosion throws off the star's outer shell and produces a not-very-bright supernova-like display. The second explosion puts another supernova's worth of energy into a second shell, which expands at high velocity until it collides with the first shell, producing an extraordinarily brilliant display.

"The two shells collide out at a distance such that the full kinetic energy is converted into light, so it is up to 100 times more luminous than an ordinary supernova," Woosley said. "Usually a supernova only converts 1 percent of its kinetic energy into light, because it has to expand so much before the light can escape."

This mechanism requires an extremely massive star, 90 to 130 times the mass of the Sun, he said. As a star this big nears the end of its life, the temperature in the core gets so hot that some of the energy from gamma-ray radiation converts into pairs of electrons and their anti-matter counterparts, positrons. The result is a phenomenon called "pair instability," in which conversion of radiation into electron-positron pairs causes the radiation pressure to drop, and the star begins to contract rapidly.

"As the core contracts it goes deeper into instability until it collapses and begins to burn fuel explosively. The star then expands violently, but not enough to disrupt the whole star," Woosley said. "For stars between 90 and 130 solar masses, you get pulses. It hits this instability, violently expands, then radiates and contracts until it gets hotter and hits the instability again. It keeps going until it loses enough mass to be stable again."

Stars in this size range are very rare, especially in our own galaxy. But they may have been more common in the early universe. "Until recently, we would have said such stars don't exist. But any mechanism that could explain this event requires a very large mass," Woosley said.

Other researchers had suggested pair instability as a possible mechanism for some supernovae, but the idea of repeated explosions--called "pulsational pair instability"--is new. According to Woosley, the new mechanism can yield a wide variety of explosions.

"You could have anywhere from two to six explosions, and they could be weak or strong," he said. "A lot of variety is possible, and it gets even more complicated because what's left behind at the end is still about 40 solar masses, and it continues to evolve and eventually makes an iron core and collapses, so you can end up with a gamma-ray burst. The possibilities are very exciting."

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>