Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars are promiscuous

30.04.2002


Blue stragglers (ringed) are irresistable to others.
© NASA/Hubble


Succession of relationships keeps heavenly bodies young

Astronomers have uncovered a scandalous degree of promiscuity in the cosmos. Clusters where stars gather more densely than usual are veritable hotbeds of partner-swapping. Some stars engage in half a dozen or so relationships during their lifetime1.

Star clusters range from loose groups of ten thousand or so stars to dense globular clusters of a million or more. They exist throughout galaxies like ours - from near the Galactic Centre to far outside the main galaxy body. In the centre of a globular cluster, star density can be more than 10 million times that around our own Sun.



Jarrod Hurley and Michael Shara, astronomers at the American Museum of Natural History in New York, have carried out state-of-the-art computer simulations of star clusters on new, purpose-built hardware called GRAPE-6.

GRAPE stands for ’gravity pipe’, a system devised in the mid-1990s to calculate the behaviour of thousands of stars moving under the influence of one another’s gravitational fields. In principle, every star influences every other one, so these calculations are very demanding.

Previous generations of GRAPE made many simple and unrealistic assumptions about the interactions between stars in clusters. GRAPE-6 follows the lives of individual stars in a population of 50,000 or so in great detail.

Clusters are so dense that two stars often become bound into binary systems. These pirouette around their common centre of mass. Some stars can even get trapped in groups of three or more. Hurley and Shara were surprised to find that these partnerships can form and break many times in a star’s life; so a star could have several different partners in close succession.

This promiscuity takes its toll. When they get together, stars can undergo profound character changes. In particular, they can coalesce or pull material from their partner to form larger, more massive stars.

Ménages and mergers

The researchers followed one particular star that began life as an object much like the Sun, but bound in a binary system with another star of about half its mass. First, this pair had a short-lived ménage-à-trois with a smaller star. They then got together with a triple system in a group of five.

After some dramatic exits from the group, the initial star, now aged about 3.5 billion, merged with another, doubling its mass. It then hooked up with another star of similar mass; they eventually coalesced to form a star with about four times the Sun’s mass. This found itself in another foursome, before merging again to make a still more massive star, which blew off much of its outer material and ended up, 4.3 billion years after the initial star formed, as a white dwarf.

This lurid case history "is not at all rare", say Hurley and Shara. Cluster stars are constantly reinventing themselves.

A star such as the Sun gets gradually hotter, bluer and brighter as it ages. But astronomical observations have revealed that many stars in clusters show a different relationship between colour, brightness and age.

For example, globular clusters contain so-called blue straggler stars. These are much older than the Sun but look, judging from their colour and brightness, almost as young. Merging with or cannibalizing other stars may rejuvenate blue stragglers. Indeed, Hurley and Shara say that, once a star has become a blue straggler, it is irresistible to others: subsequent relationships "are almost inevitable".

References

  1. Hurley, J. R. & Shara, M. M. The promiscuous nature of stars in clusters. Astrophysical Journal, 570, 184 - 189, (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>