Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars are promiscuous

30.04.2002


Blue stragglers (ringed) are irresistable to others.
© NASA/Hubble


Succession of relationships keeps heavenly bodies young

Astronomers have uncovered a scandalous degree of promiscuity in the cosmos. Clusters where stars gather more densely than usual are veritable hotbeds of partner-swapping. Some stars engage in half a dozen or so relationships during their lifetime1.

Star clusters range from loose groups of ten thousand or so stars to dense globular clusters of a million or more. They exist throughout galaxies like ours - from near the Galactic Centre to far outside the main galaxy body. In the centre of a globular cluster, star density can be more than 10 million times that around our own Sun.



Jarrod Hurley and Michael Shara, astronomers at the American Museum of Natural History in New York, have carried out state-of-the-art computer simulations of star clusters on new, purpose-built hardware called GRAPE-6.

GRAPE stands for ’gravity pipe’, a system devised in the mid-1990s to calculate the behaviour of thousands of stars moving under the influence of one another’s gravitational fields. In principle, every star influences every other one, so these calculations are very demanding.

Previous generations of GRAPE made many simple and unrealistic assumptions about the interactions between stars in clusters. GRAPE-6 follows the lives of individual stars in a population of 50,000 or so in great detail.

Clusters are so dense that two stars often become bound into binary systems. These pirouette around their common centre of mass. Some stars can even get trapped in groups of three or more. Hurley and Shara were surprised to find that these partnerships can form and break many times in a star’s life; so a star could have several different partners in close succession.

This promiscuity takes its toll. When they get together, stars can undergo profound character changes. In particular, they can coalesce or pull material from their partner to form larger, more massive stars.

Ménages and mergers

The researchers followed one particular star that began life as an object much like the Sun, but bound in a binary system with another star of about half its mass. First, this pair had a short-lived ménage-à-trois with a smaller star. They then got together with a triple system in a group of five.

After some dramatic exits from the group, the initial star, now aged about 3.5 billion, merged with another, doubling its mass. It then hooked up with another star of similar mass; they eventually coalesced to form a star with about four times the Sun’s mass. This found itself in another foursome, before merging again to make a still more massive star, which blew off much of its outer material and ended up, 4.3 billion years after the initial star formed, as a white dwarf.

This lurid case history "is not at all rare", say Hurley and Shara. Cluster stars are constantly reinventing themselves.

A star such as the Sun gets gradually hotter, bluer and brighter as it ages. But astronomical observations have revealed that many stars in clusters show a different relationship between colour, brightness and age.

For example, globular clusters contain so-called blue straggler stars. These are much older than the Sun but look, judging from their colour and brightness, almost as young. Merging with or cannibalizing other stars may rejuvenate blue stragglers. Indeed, Hurley and Shara say that, once a star has become a blue straggler, it is irresistible to others: subsequent relationships "are almost inevitable".

References

  1. Hurley, J. R. & Shara, M. M. The promiscuous nature of stars in clusters. Astrophysical Journal, 570, 184 - 189, (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>