Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stars are promiscuous

30.04.2002


Blue stragglers (ringed) are irresistable to others.
© NASA/Hubble


Succession of relationships keeps heavenly bodies young

Astronomers have uncovered a scandalous degree of promiscuity in the cosmos. Clusters where stars gather more densely than usual are veritable hotbeds of partner-swapping. Some stars engage in half a dozen or so relationships during their lifetime1.

Star clusters range from loose groups of ten thousand or so stars to dense globular clusters of a million or more. They exist throughout galaxies like ours - from near the Galactic Centre to far outside the main galaxy body. In the centre of a globular cluster, star density can be more than 10 million times that around our own Sun.



Jarrod Hurley and Michael Shara, astronomers at the American Museum of Natural History in New York, have carried out state-of-the-art computer simulations of star clusters on new, purpose-built hardware called GRAPE-6.

GRAPE stands for ’gravity pipe’, a system devised in the mid-1990s to calculate the behaviour of thousands of stars moving under the influence of one another’s gravitational fields. In principle, every star influences every other one, so these calculations are very demanding.

Previous generations of GRAPE made many simple and unrealistic assumptions about the interactions between stars in clusters. GRAPE-6 follows the lives of individual stars in a population of 50,000 or so in great detail.

Clusters are so dense that two stars often become bound into binary systems. These pirouette around their common centre of mass. Some stars can even get trapped in groups of three or more. Hurley and Shara were surprised to find that these partnerships can form and break many times in a star’s life; so a star could have several different partners in close succession.

This promiscuity takes its toll. When they get together, stars can undergo profound character changes. In particular, they can coalesce or pull material from their partner to form larger, more massive stars.

Ménages and mergers

The researchers followed one particular star that began life as an object much like the Sun, but bound in a binary system with another star of about half its mass. First, this pair had a short-lived ménage-à-trois with a smaller star. They then got together with a triple system in a group of five.

After some dramatic exits from the group, the initial star, now aged about 3.5 billion, merged with another, doubling its mass. It then hooked up with another star of similar mass; they eventually coalesced to form a star with about four times the Sun’s mass. This found itself in another foursome, before merging again to make a still more massive star, which blew off much of its outer material and ended up, 4.3 billion years after the initial star formed, as a white dwarf.

This lurid case history "is not at all rare", say Hurley and Shara. Cluster stars are constantly reinventing themselves.

A star such as the Sun gets gradually hotter, bluer and brighter as it ages. But astronomical observations have revealed that many stars in clusters show a different relationship between colour, brightness and age.

For example, globular clusters contain so-called blue straggler stars. These are much older than the Sun but look, judging from their colour and brightness, almost as young. Merging with or cannibalizing other stars may rejuvenate blue stragglers. Indeed, Hurley and Shara say that, once a star has become a blue straggler, it is irresistible to others: subsequent relationships "are almost inevitable".

References

  1. Hurley, J. R. & Shara, M. M. The promiscuous nature of stars in clusters. Astrophysical Journal, 570, 184 - 189, (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Individualized fiber components for the world market
23.06.2017 | Laser Zentrum Hannover e.V.

nachricht Innovative LED High Power Light Source for UV
22.06.2017 | Omicron - Laserage Laserprodukte GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>