Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble zooms in on heart of mystery comet

16.11.2007
Astronomers have used Hubble’s powerful resolution to study Comet Holmes’ core for clues about how the comet brightened. The orbiting observatory’s Wide Field Planetary Camera 2 (WFPC2) monitored the comet for several days, snapping images on 29 Oct., 31 Oct. and 4 Nov. Hubble’s crisp “eye” can see details as small as 54 kilometres across, providing the sharpest view yet of the source of the spectacular brightening.

The Hubble image at right, taken on 4 Nov., shows the heart of the comet. The central portion of the image has been specially processed to highlight variations in the dust distribution near the nucleus. About twice as much dust lies along the east-west direction (the horizontal direction) as along the north-south direction (the vertical direction), giving the comet a “bow tie” appearance.

The composite colour image at left, taken Nov. 1 by the amateur astronomer Alan Dyer, shows the complex structure of the entire coma, consisting of concentric shells of dust and a faint tail emanating from the comet’s right side.

The nucleus — the small solid body that is the source of the comet’s activity — is still swaddled in bright dust, even 12 days after the spectacular outburst. “Most of what Hubble sees is sunlight scattered from microscopic particles,” explained Hal Weaver of The Johns Hopkins University Applied Physics Laboratory of Laurel, Maryland in the USA, who led the Hubble investigation. “But we may finally be starting to detect the emergence of the nucleus itself in this final Hubble image.”

Hubble first observed Comet 17P/Holmes on June 15, 1999, when there was virtually no dusty shroud around the nucleus. Although Hubble cannot resolve the nucleus, astronomers inferred its size by measuring its brightness. Astronomers deduced that the nucleus’s diameter was approximately 3.4 kilometres, about the distance between the Arc de Triomphe and the Louvre glass pyramid in Paris. They hope to use the new Hubble images to determine the size of the comet’s nucleus to see how much of it was blasted away during the outburst.

Hubble’s two earlier snapshots of Comet Holmes also showed some interesting features. On 29 Oct. the telescope spied three “spurs” of dust emanating from the nucleus while the Hubble images taken on 31 Oct. revealed an outburst of dust just west of the nucleus.

The Hubble images however do not show any large fragments near the nucleus of Comet Holmes, unlike the case of Comet 73P/Schwassmann-Wachmann 3 (SW3). In the spring of 2006 Hubble observations revealed a multitude of “mini-comets” ejected by SW3 after the comet increased dramatically in brightness. Ground-based images of Comet Holmes show a large, spherically symmetrical cloud of dust that is offset from the nucleus, suggesting that a large fragment broke off and subsequently disintegrated into tiny dust particles after moving away from the main nucleus. Unfortunately, the huge amount of dust near the comet’s nucleus and the relatively large distance from Earth (240 million kilometres, or 1.6 astronomical units for Holmes versus 15 million kilometres, 0.1 astronomical units for SW3), conspire to make detecting fragments near Holmes nearly impossible right now, unless the fragments are nearly as large as the nucleus itself.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0718.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>