Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble zooms in on heart of mystery comet

16.11.2007
Astronomers have used Hubble’s powerful resolution to study Comet Holmes’ core for clues about how the comet brightened. The orbiting observatory’s Wide Field Planetary Camera 2 (WFPC2) monitored the comet for several days, snapping images on 29 Oct., 31 Oct. and 4 Nov. Hubble’s crisp “eye” can see details as small as 54 kilometres across, providing the sharpest view yet of the source of the spectacular brightening.

The Hubble image at right, taken on 4 Nov., shows the heart of the comet. The central portion of the image has been specially processed to highlight variations in the dust distribution near the nucleus. About twice as much dust lies along the east-west direction (the horizontal direction) as along the north-south direction (the vertical direction), giving the comet a “bow tie” appearance.

The composite colour image at left, taken Nov. 1 by the amateur astronomer Alan Dyer, shows the complex structure of the entire coma, consisting of concentric shells of dust and a faint tail emanating from the comet’s right side.

The nucleus — the small solid body that is the source of the comet’s activity — is still swaddled in bright dust, even 12 days after the spectacular outburst. “Most of what Hubble sees is sunlight scattered from microscopic particles,” explained Hal Weaver of The Johns Hopkins University Applied Physics Laboratory of Laurel, Maryland in the USA, who led the Hubble investigation. “But we may finally be starting to detect the emergence of the nucleus itself in this final Hubble image.”

Hubble first observed Comet 17P/Holmes on June 15, 1999, when there was virtually no dusty shroud around the nucleus. Although Hubble cannot resolve the nucleus, astronomers inferred its size by measuring its brightness. Astronomers deduced that the nucleus’s diameter was approximately 3.4 kilometres, about the distance between the Arc de Triomphe and the Louvre glass pyramid in Paris. They hope to use the new Hubble images to determine the size of the comet’s nucleus to see how much of it was blasted away during the outburst.

Hubble’s two earlier snapshots of Comet Holmes also showed some interesting features. On 29 Oct. the telescope spied three “spurs” of dust emanating from the nucleus while the Hubble images taken on 31 Oct. revealed an outburst of dust just west of the nucleus.

The Hubble images however do not show any large fragments near the nucleus of Comet Holmes, unlike the case of Comet 73P/Schwassmann-Wachmann 3 (SW3). In the spring of 2006 Hubble observations revealed a multitude of “mini-comets” ejected by SW3 after the comet increased dramatically in brightness. Ground-based images of Comet Holmes show a large, spherically symmetrical cloud of dust that is offset from the nucleus, suggesting that a large fragment broke off and subsequently disintegrated into tiny dust particles after moving away from the main nucleus. Unfortunately, the huge amount of dust near the comet’s nucleus and the relatively large distance from Earth (240 million kilometres, or 1.6 astronomical units for Holmes versus 15 million kilometres, 0.1 astronomical units for SW3), conspire to make detecting fragments near Holmes nearly impossible right now, unless the fragments are nearly as large as the nucleus itself.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0718.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>