Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble zooms in on heart of mystery comet

16.11.2007
Astronomers have used Hubble’s powerful resolution to study Comet Holmes’ core for clues about how the comet brightened. The orbiting observatory’s Wide Field Planetary Camera 2 (WFPC2) monitored the comet for several days, snapping images on 29 Oct., 31 Oct. and 4 Nov. Hubble’s crisp “eye” can see details as small as 54 kilometres across, providing the sharpest view yet of the source of the spectacular brightening.

The Hubble image at right, taken on 4 Nov., shows the heart of the comet. The central portion of the image has been specially processed to highlight variations in the dust distribution near the nucleus. About twice as much dust lies along the east-west direction (the horizontal direction) as along the north-south direction (the vertical direction), giving the comet a “bow tie” appearance.

The composite colour image at left, taken Nov. 1 by the amateur astronomer Alan Dyer, shows the complex structure of the entire coma, consisting of concentric shells of dust and a faint tail emanating from the comet’s right side.

The nucleus — the small solid body that is the source of the comet’s activity — is still swaddled in bright dust, even 12 days after the spectacular outburst. “Most of what Hubble sees is sunlight scattered from microscopic particles,” explained Hal Weaver of The Johns Hopkins University Applied Physics Laboratory of Laurel, Maryland in the USA, who led the Hubble investigation. “But we may finally be starting to detect the emergence of the nucleus itself in this final Hubble image.”

Hubble first observed Comet 17P/Holmes on June 15, 1999, when there was virtually no dusty shroud around the nucleus. Although Hubble cannot resolve the nucleus, astronomers inferred its size by measuring its brightness. Astronomers deduced that the nucleus’s diameter was approximately 3.4 kilometres, about the distance between the Arc de Triomphe and the Louvre glass pyramid in Paris. They hope to use the new Hubble images to determine the size of the comet’s nucleus to see how much of it was blasted away during the outburst.

Hubble’s two earlier snapshots of Comet Holmes also showed some interesting features. On 29 Oct. the telescope spied three “spurs” of dust emanating from the nucleus while the Hubble images taken on 31 Oct. revealed an outburst of dust just west of the nucleus.

The Hubble images however do not show any large fragments near the nucleus of Comet Holmes, unlike the case of Comet 73P/Schwassmann-Wachmann 3 (SW3). In the spring of 2006 Hubble observations revealed a multitude of “mini-comets” ejected by SW3 after the comet increased dramatically in brightness. Ground-based images of Comet Holmes show a large, spherically symmetrical cloud of dust that is offset from the nucleus, suggesting that a large fragment broke off and subsequently disintegrated into tiny dust particles after moving away from the main nucleus. Unfortunately, the huge amount of dust near the comet’s nucleus and the relatively large distance from Earth (240 million kilometres, or 1.6 astronomical units for Holmes versus 15 million kilometres, 0.1 astronomical units for SW3), conspire to make detecting fragments near Holmes nearly impossible right now, unless the fragments are nearly as large as the nucleus itself.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0718.html

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>