Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hubble zooms in on heart of mystery comet

Astronomers have used Hubble’s powerful resolution to study Comet Holmes’ core for clues about how the comet brightened. The orbiting observatory’s Wide Field Planetary Camera 2 (WFPC2) monitored the comet for several days, snapping images on 29 Oct., 31 Oct. and 4 Nov. Hubble’s crisp “eye” can see details as small as 54 kilometres across, providing the sharpest view yet of the source of the spectacular brightening.

The Hubble image at right, taken on 4 Nov., shows the heart of the comet. The central portion of the image has been specially processed to highlight variations in the dust distribution near the nucleus. About twice as much dust lies along the east-west direction (the horizontal direction) as along the north-south direction (the vertical direction), giving the comet a “bow tie” appearance.

The composite colour image at left, taken Nov. 1 by the amateur astronomer Alan Dyer, shows the complex structure of the entire coma, consisting of concentric shells of dust and a faint tail emanating from the comet’s right side.

The nucleus — the small solid body that is the source of the comet’s activity — is still swaddled in bright dust, even 12 days after the spectacular outburst. “Most of what Hubble sees is sunlight scattered from microscopic particles,” explained Hal Weaver of The Johns Hopkins University Applied Physics Laboratory of Laurel, Maryland in the USA, who led the Hubble investigation. “But we may finally be starting to detect the emergence of the nucleus itself in this final Hubble image.”

Hubble first observed Comet 17P/Holmes on June 15, 1999, when there was virtually no dusty shroud around the nucleus. Although Hubble cannot resolve the nucleus, astronomers inferred its size by measuring its brightness. Astronomers deduced that the nucleus’s diameter was approximately 3.4 kilometres, about the distance between the Arc de Triomphe and the Louvre glass pyramid in Paris. They hope to use the new Hubble images to determine the size of the comet’s nucleus to see how much of it was blasted away during the outburst.

Hubble’s two earlier snapshots of Comet Holmes also showed some interesting features. On 29 Oct. the telescope spied three “spurs” of dust emanating from the nucleus while the Hubble images taken on 31 Oct. revealed an outburst of dust just west of the nucleus.

The Hubble images however do not show any large fragments near the nucleus of Comet Holmes, unlike the case of Comet 73P/Schwassmann-Wachmann 3 (SW3). In the spring of 2006 Hubble observations revealed a multitude of “mini-comets” ejected by SW3 after the comet increased dramatically in brightness. Ground-based images of Comet Holmes show a large, spherically symmetrical cloud of dust that is offset from the nucleus, suggesting that a large fragment broke off and subsequently disintegrated into tiny dust particles after moving away from the main nucleus. Unfortunately, the huge amount of dust near the comet’s nucleus and the relatively large distance from Earth (240 million kilometres, or 1.6 astronomical units for Holmes versus 15 million kilometres, 0.1 astronomical units for SW3), conspire to make detecting fragments near Holmes nearly impossible right now, unless the fragments are nearly as large as the nucleus itself.

Lars Christensen | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>