Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young’s experiment in a hydrogen molecule

16.11.2007
According to the authors the research could prove to be of great importance for the future development of quantum computation. The experiment illustrates the transition between the quantum and the macroscopic worlds. Conclusions appear in the latest issue of Science.

An international investigation involving the participation of the Consejo Superior de Investigaciones Científicas (CSIC) has reproduced the experiment of Thomas Young in a molecule of hydrogen, the smallest molecular system that exists. In 1803 the English scientist tested a pattern of interferences in light from a distant source, on passing through a “double slit” and thus being refracted.

This finding confirmed the theory that light had wave motion properties. The authors of this current research, which appears in the latest issue of the journal Science, uses electrons instead of light and the nuclei of the hydrogen molecule as emitting slits.

CSIC researcher Ricardo Díez, Vicedirector of the Centre for Materials Physics (a mixed body of the CSIC and the University of the Basque Country in Donostia-San Sebastián and co-author of the article, explains their experiment: “These interference patterns are the same as those produced, on a large scale, when sunlight passes through Persian blinds, throwing shadow patterns and, as it were, games, on the walls. This phenomenon is due to the fact that (light) particles, as with electrons, can also have wave motion behaviour”.

At much smaller sizes, atomic planes can create interferences in the transmission of X rays, thus providing information about the internal structure of materials. This is the fundamental basis of the experimental techniques such as X ray diffraction, thanks to which the DNA double helix structure was discovered. Ricardo Díez explains, “The Laws that predict, for example, the trajectory of a car at a certain speed are not those that govern the behaviour of atomic-sized particles. On a nanometric scale sizes are measured in units a thousand million times smaller than a metre, and the behaviour of objects at this scale can prove to be surprising, almost magical even!”

The experiment

The researchers reproduced Young’s experiment in the smallest system existing - a molecule of hydrogen -, which consists of two protons and two electrons. The research team used light generated by the large synchrotron accelerator at the Lawrence Berkeley National Laboratory (USA), to extract the two electrons from the molecule of hydrogen. The two protons carry out the role of the two electron-emitting apertures, separated by an extremely small distance – ten thousand millionths of a metre. On its journey to the detector, where they are collected, each one of the electrons shows an interference pattern that suggests wave nature rather than particle motion, and as if emission had taken place from the two points at the same time.

The interference pattern of each one of the two electrons extracted from the molecule is conditioned by the presence and the velocity of the other: the greater the difference in their speeds, the less the interaction between them and the more visible the interference patterns. Under these conditions, the system is more of a quantum nature. “The analysis of the patterns as a function of velocity enables the investigation of the subtle mechanisms of the transition between classical physics and quantum physics. It is necessary to understand the quantum relationship between a small number of electrons, such as those of hydrogen, as it is the basis of concepts as sophisticated as quantum cryptography or of the future development of quantum computation”, concluded the CSIC researcher.

The study was led by University of Frankfurt researcher Reinhard Dörner and involved, moreover, the participation of German North American and Russian scientists.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1514&hizk=I

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>