Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Momentum builds for manufacturer of breakthrough 'repeatable carbon nanotube growth' tool

16.11.2007
Surrey NanoSystems, a joint venture between the University of Surrey’s Advanced Technology Institute and CEVP Ltd, is currently building its third NanoGrowth system for fabricating carbon nanotube structures, and is rapidly commercialising its technology.

Two aspects of the company's unique intellectual property are driving market interest: the very high degree of precision and repeatability built into the tool, and the ability to grow materials at low temperatures that are compatible with commercial semiconductor processes. At the MRS Fall Exhibit, Surrey NanoSystems' Chief Scientist Dr Guan Yow Chen will be on hand to discuss and advise on tool configurations for commercial applications and research projects.

"At this early stage in the cycle for applying new carbon nanotube materials commercially, the requirement for a stable platform capable of prototyping and fabricating structures repeatably is critical. Our unique tool design provides this capability, combined with flexibility that allows configurations to be built to serve individual development ideas. The tool's intrinsic modularity allows users to gain automated control over all aspect of nanomaterial synthesis, from catalyst generation to final material processing," says Dr Guan Yow Chen of Surrey NanoSystems.

He continues: "I'm able to discuss the processing techniques and results that the company has gained from our development partnership with the University of Surrey's Advanced Technology Institute, plus a parallel agreement that we now have in place with a major European research laboratory, which is helping us with independent test-bed services for our unique processing recipes."

The company's first tool is NanoGrowth 1000n, which comes with both CVD (chemical vapor deposition) and PECVD (plasma-enhanced CVD) processing capability. These two techniques provide great processing versatility for users. Precision fabrication and configuration repeatability principles are at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among many quality-oriented architectural features are an ultra-high purity gas delivery system and flexible closed-loop control systems that allow users to define target tolerances to achieve a high level of repeatability during all phases of the process. Field-proven carbon nanotube fabrication programmes are provided with the tool in the form of software templates that may be adapted easily by users for their own applications.

A high degree of hardware modularity further extends the capability of the tool's design, as it facilitates easy expansion and configuration to meet current and future fabrication requirements. Among many options are further processing techniques such as ICP (inductively coupled plasma), dual sputter sources for catalyst deposition - including a module for delivery of vapor-phase catalysts like ferrocene - and modules to add process stages for automated pilot production or high throughput. Included in the latter category are an automated wafer transport load/lock system, integrated etching capability, and a PECVD module for deposition of thin-film silicon-based materials.

Surrey NanoSystems is focused on providing production platforms for using carbon nanotubes and other nanowires in high technology applications, including as a replacement for the conventional metals used in the fabrication of silicon chips - which are approaching their performance limits. The concept behind Surrey NanoSystems started in 2005, as a joint venture between The University of Surrey's Advanced Technology Institute, which had developed a pioneering process for manufacturing carbon nanotubes at room temperature, and the thin film tool manufacturer CEVP. The organisations united to turn the carbon nanotube fabrication idea into a practical, commercial tool. In December 2006, IP Group provided substantial funding to create a new corporation, Surrey NanoSystems, formed with staff and IP from ATI and CEVP.

Stuart Miller | alfa
Further information:
http://www.surreynanosysems.com
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>