Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Momentum builds for manufacturer of breakthrough 'repeatable carbon nanotube growth' tool

16.11.2007
Surrey NanoSystems, a joint venture between the University of Surrey’s Advanced Technology Institute and CEVP Ltd, is currently building its third NanoGrowth system for fabricating carbon nanotube structures, and is rapidly commercialising its technology.

Two aspects of the company's unique intellectual property are driving market interest: the very high degree of precision and repeatability built into the tool, and the ability to grow materials at low temperatures that are compatible with commercial semiconductor processes. At the MRS Fall Exhibit, Surrey NanoSystems' Chief Scientist Dr Guan Yow Chen will be on hand to discuss and advise on tool configurations for commercial applications and research projects.

"At this early stage in the cycle for applying new carbon nanotube materials commercially, the requirement for a stable platform capable of prototyping and fabricating structures repeatably is critical. Our unique tool design provides this capability, combined with flexibility that allows configurations to be built to serve individual development ideas. The tool's intrinsic modularity allows users to gain automated control over all aspect of nanomaterial synthesis, from catalyst generation to final material processing," says Dr Guan Yow Chen of Surrey NanoSystems.

He continues: "I'm able to discuss the processing techniques and results that the company has gained from our development partnership with the University of Surrey's Advanced Technology Institute, plus a parallel agreement that we now have in place with a major European research laboratory, which is helping us with independent test-bed services for our unique processing recipes."

The company's first tool is NanoGrowth 1000n, which comes with both CVD (chemical vapor deposition) and PECVD (plasma-enhanced CVD) processing capability. These two techniques provide great processing versatility for users. Precision fabrication and configuration repeatability principles are at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among many quality-oriented architectural features are an ultra-high purity gas delivery system and flexible closed-loop control systems that allow users to define target tolerances to achieve a high level of repeatability during all phases of the process. Field-proven carbon nanotube fabrication programmes are provided with the tool in the form of software templates that may be adapted easily by users for their own applications.

A high degree of hardware modularity further extends the capability of the tool's design, as it facilitates easy expansion and configuration to meet current and future fabrication requirements. Among many options are further processing techniques such as ICP (inductively coupled plasma), dual sputter sources for catalyst deposition - including a module for delivery of vapor-phase catalysts like ferrocene - and modules to add process stages for automated pilot production or high throughput. Included in the latter category are an automated wafer transport load/lock system, integrated etching capability, and a PECVD module for deposition of thin-film silicon-based materials.

Surrey NanoSystems is focused on providing production platforms for using carbon nanotubes and other nanowires in high technology applications, including as a replacement for the conventional metals used in the fabrication of silicon chips - which are approaching their performance limits. The concept behind Surrey NanoSystems started in 2005, as a joint venture between The University of Surrey's Advanced Technology Institute, which had developed a pioneering process for manufacturing carbon nanotubes at room temperature, and the thin film tool manufacturer CEVP. The organisations united to turn the carbon nanotube fabrication idea into a practical, commercial tool. In December 2006, IP Group provided substantial funding to create a new corporation, Surrey NanoSystems, formed with staff and IP from ATI and CEVP.

Stuart Miller | alfa
Further information:
http://www.surreynanosysems.com
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>