Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Momentum builds for manufacturer of breakthrough 'repeatable carbon nanotube growth' tool

16.11.2007
Surrey NanoSystems, a joint venture between the University of Surrey’s Advanced Technology Institute and CEVP Ltd, is currently building its third NanoGrowth system for fabricating carbon nanotube structures, and is rapidly commercialising its technology.

Two aspects of the company's unique intellectual property are driving market interest: the very high degree of precision and repeatability built into the tool, and the ability to grow materials at low temperatures that are compatible with commercial semiconductor processes. At the MRS Fall Exhibit, Surrey NanoSystems' Chief Scientist Dr Guan Yow Chen will be on hand to discuss and advise on tool configurations for commercial applications and research projects.

"At this early stage in the cycle for applying new carbon nanotube materials commercially, the requirement for a stable platform capable of prototyping and fabricating structures repeatably is critical. Our unique tool design provides this capability, combined with flexibility that allows configurations to be built to serve individual development ideas. The tool's intrinsic modularity allows users to gain automated control over all aspect of nanomaterial synthesis, from catalyst generation to final material processing," says Dr Guan Yow Chen of Surrey NanoSystems.

He continues: "I'm able to discuss the processing techniques and results that the company has gained from our development partnership with the University of Surrey's Advanced Technology Institute, plus a parallel agreement that we now have in place with a major European research laboratory, which is helping us with independent test-bed services for our unique processing recipes."

The company's first tool is NanoGrowth 1000n, which comes with both CVD (chemical vapor deposition) and PECVD (plasma-enhanced CVD) processing capability. These two techniques provide great processing versatility for users. Precision fabrication and configuration repeatability principles are at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among many quality-oriented architectural features are an ultra-high purity gas delivery system and flexible closed-loop control systems that allow users to define target tolerances to achieve a high level of repeatability during all phases of the process. Field-proven carbon nanotube fabrication programmes are provided with the tool in the form of software templates that may be adapted easily by users for their own applications.

A high degree of hardware modularity further extends the capability of the tool's design, as it facilitates easy expansion and configuration to meet current and future fabrication requirements. Among many options are further processing techniques such as ICP (inductively coupled plasma), dual sputter sources for catalyst deposition - including a module for delivery of vapor-phase catalysts like ferrocene - and modules to add process stages for automated pilot production or high throughput. Included in the latter category are an automated wafer transport load/lock system, integrated etching capability, and a PECVD module for deposition of thin-film silicon-based materials.

Surrey NanoSystems is focused on providing production platforms for using carbon nanotubes and other nanowires in high technology applications, including as a replacement for the conventional metals used in the fabrication of silicon chips - which are approaching their performance limits. The concept behind Surrey NanoSystems started in 2005, as a joint venture between The University of Surrey's Advanced Technology Institute, which had developed a pioneering process for manufacturing carbon nanotubes at room temperature, and the thin film tool manufacturer CEVP. The organisations united to turn the carbon nanotube fabrication idea into a practical, commercial tool. In December 2006, IP Group provided substantial funding to create a new corporation, Surrey NanoSystems, formed with staff and IP from ATI and CEVP.

Stuart Miller | alfa
Further information:
http://www.surreynanosysems.com
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>