Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pioneering research seeks to harness force of nature

A University of Leicester team’s work will assist in creation of nanomachines.

A pioneering team from the University of Leicester is seeking to harness a force of nature- only measured accurately a decade ago – to help develop the technology of tomorrow.

Their work will have applications in what is considered to be science fiction where miniscule submarine-type machines might be used to destroy cancer cells.

The research group is believed to be the only group in the UK carrying out Casimir force measurements of smooth and patterned surfaces and assessing the utility of the force for nanotechnology.

The research arises from the quantum fluctuations of vacuum, part of quantum field theory, which at present is the universal theory describing the behaviour of all quantum particles.

The Casimir force is a subtle consequence of the vacuum fluctuations, which can be directly measured using the tools of nanotechnology, specifically atomic force microscopes.

Results of the research may lead to frictionless bearings and may solve one of the fundamental problems in nanomachines.

The research, led by Chris Binns, Professor of Nanoscience in the Department of Physics and Astronomy, is not only of fundamental interest. It is hoped that it will be able to harness the Casimir force as a way of transmitting force without contact in nanomachines, ie machines with components approaching the size of molecules.

He said: “Generally nanomachines are science fiction and so it is up to the imagination about what they could do but one of the most talked about potential use is in medical applications where submarine type machines might be used to identify cancer cells and destroy them.”

Normally in such machines the Casimir force is a problem, because at the small distances between components the force is quite strong and generates a fundamental ‘stickiness’ to everything, which is impossible to remove.

Professor Binns’ research is trying to turn the problem on its head, and to utilise the Casimir force as a useful way of transmitting force without contact, for example patterning surface to produce the lateral force in which one patterned surface can drag another one in the same direction.

The force was first accurately measured about 10 years ago and nanoscientists are currently trying to find ways to modify and use it, for instance in lateral force.

Professor Binns commented: “The research is at a fundamental level, so at this stage we only hope to determine how the force varies between surfaces composed of different materials and how patterning the surface changes it. Also, we want to measure the magnitude of the lateral force between surfaces.

“One new area we are starting to look at, however, is to measure the force between a normal material and a ‘metamaterial’. A metamaterial is a surface with a designed nanoscale patterning that gives strange optical properties.

“There are indications that with the right sort of patterning it may be possible to reverse the force to produce repulsion. This would have huge technological repercussions and lead to, for example, frictionless bearings, as well as getting rid of the stickiness problem in nano-machines.

“This is exciting research because it is controversial. Not everybody believes that a repulsive force is possible.”

Ather Mirza | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Physicists made crystal lattice from polaritons
20.03.2018 | ITMO University

nachricht Mars' oceans formed early, possibly aided by massive volcanic eruptions
20.03.2018 | University of California - Berkeley

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>