Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pioneering research seeks to harness force of nature

15.11.2007
A University of Leicester team’s work will assist in creation of nanomachines.

A pioneering team from the University of Leicester is seeking to harness a force of nature- only measured accurately a decade ago – to help develop the technology of tomorrow.

Their work will have applications in what is considered to be science fiction where miniscule submarine-type machines might be used to destroy cancer cells.

The research group is believed to be the only group in the UK carrying out Casimir force measurements of smooth and patterned surfaces and assessing the utility of the force for nanotechnology.

The research arises from the quantum fluctuations of vacuum, part of quantum field theory, which at present is the universal theory describing the behaviour of all quantum particles.

The Casimir force is a subtle consequence of the vacuum fluctuations, which can be directly measured using the tools of nanotechnology, specifically atomic force microscopes.

Results of the research may lead to frictionless bearings and may solve one of the fundamental problems in nanomachines.

The research, led by Chris Binns, Professor of Nanoscience in the Department of Physics and Astronomy, is not only of fundamental interest. It is hoped that it will be able to harness the Casimir force as a way of transmitting force without contact in nanomachines, ie machines with components approaching the size of molecules.

He said: “Generally nanomachines are science fiction and so it is up to the imagination about what they could do but one of the most talked about potential use is in medical applications where submarine type machines might be used to identify cancer cells and destroy them.”

Normally in such machines the Casimir force is a problem, because at the small distances between components the force is quite strong and generates a fundamental ‘stickiness’ to everything, which is impossible to remove.

Professor Binns’ research is trying to turn the problem on its head, and to utilise the Casimir force as a useful way of transmitting force without contact, for example patterning surface to produce the lateral force in which one patterned surface can drag another one in the same direction.

The force was first accurately measured about 10 years ago and nanoscientists are currently trying to find ways to modify and use it, for instance in lateral force.

Professor Binns commented: “The research is at a fundamental level, so at this stage we only hope to determine how the force varies between surfaces composed of different materials and how patterning the surface changes it. Also, we want to measure the magnitude of the lateral force between surfaces.

“One new area we are starting to look at, however, is to measure the force between a normal material and a ‘metamaterial’. A metamaterial is a surface with a designed nanoscale patterning that gives strange optical properties.

“There are indications that with the right sort of patterning it may be possible to reverse the force to produce repulsion. This would have huge technological repercussions and lead to, for example, frictionless bearings, as well as getting rid of the stickiness problem in nano-machines.

“This is exciting research because it is controversial. Not everybody believes that a repulsive force is possible.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>