Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Distant black holes may be source of high-energy cosmic rays

14.11.2007
Breakthrough astrophysics research may have established the hitherto mysterious source of exceptionally high-energy cosmic ray emissions, according to recently published research that culminates a project developed by a scientist at the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

This extraordinary result is a product of DOE’s investment in high-energy physics research, giving scientists the resources they need to explore the interactions between matter, energy, time and space.

Argonne senior physicist Harold Spinka, in collaboration with more than 300 scientists from around the world affiliated with the Pierre Auger Observatory in western Argentina, determined a correlation between emanations of sufficiently energetic cosmic rays with a particular class of extrastellar objects, known as active galactic nuclei (AGNs). Scientists believe that AGNs are massive black holes in the center of distant galaxies that devour matter while ejecting plasma streams composed of high-energy particles.

“We have taken a big step forward in solving the mystery of the nature and origin of the highest-energy cosmic rays,” said Nobel Prize winner and University of Chicago professor emeritus James Cronin, who founded the Pierre Auger Observatory with Alan Watson of the University of Leeds. “The age of cosmic-ray astronomy has arrived. In the next few years, our data will permit us to identify the exact sources of these cosmic rays and how they accelerate these particles.”

After observing and recording approximately two years’ worth of cosmic rays hitting the earth, the Pierre Auger team noticed that the cosmic rays – a misnomer for energetic atomic particles, mainly protons -- with energies in excess of 60 EeV (60 exa-electron volts, or 1018 electron volts) tended to emanate from locations near known AGNs.

Most cosmic rays that strike the Earth originate from within our own Milky Way galaxy, where they emanate from supernovae, black holes or neutron stars. However, these cosmic rays have a substantially lower energy than those under investigation in the Pierre Auger study. Researchers knew that they could not attribute the production of those rays to any phenomenon or body within our own galaxy, and until now research to identify an extra-galactic source had yielded little more than hypotheses.

Astronomers had difficulty pinpointing the sources of especially energetic cosmic rays because they hit the Earth so infrequently, in contrast to the lower-energy cosmic radiation that continually bombards the Earth. During more than two years of observation, the Pierre Auger scientists detected only 28 cosmic rays that matched their stringent criteria. They excluded extragalactic cosmic rays with energies lower than 40 to 60 EeV, because the trajectories of these particles are so badly bent by deep-space magnetic fields that scientists cannot determine their origin; they also did not look at cosmic rays that had traveled more than 300 million light years due to concerns that interactions with cosmic background radiation during such a long journey would have significantly reduced their energy.

“The concern is that if you look too far back in time and space, it becomes harder to figure out a correlation,” Spinka said.

Since 2004, the observatory, which contains a telescope array the size of Rhode Island, has detected only 80 cosmic rays with energies greater than 40 EeV. Of the 28 of these that had energies greater than approximately 60 EeV and originated within about 250 million light-years of Earth, 20 were located close to known AGNs. Six of the remaining eight cosmic rays come from directions where the source may be obscured by other matter in our galaxy.

According to Spinka, astronomers have worked hard to complete the catalog of all the AGNs in the observable universe, and he believes that cosmic rays may offer clues as to where others might be. “I think that many astronomers will indeed go back and look at the areas of space to which we traced the cosmic rays, because it’s definitely possible we might have missed something,” he said.

Cosmic ray observations provide astronomers with another way of examining celestial features outside of the Milky Way, Spinka said. “Up until now there has been no way of doing astronomy for objects outside our galaxy except by using various wavelengths of light. This paper represents the first time that we’ve been able to use charged particles to observe these faraway objects.”

The Pierre Auger Observatory is being built by a team of more than 370 scientists and engineers from 17 countries. “The collaboration is a true international partnership in which no country contributed more than 25 percent of the $54 million construction cost,” said Danilo Zavrtanik of the University of Nova Gorica and chair of the Auger Collaboration Board.

Steve McGregor | EurekAlert!
Further information:
http://www.anl.gov
http://www.auger.org/news/PRagn/AGN_correlation.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>