Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Physics provides new insights on cataract formation

Using the tools and techniques of soft condensed matter physics, a research team in Switzerland has demonstrated that a finely tuned balance of attractions between proteins keeps the lens of the eye transparent, and that even a small change in this balance can cause proteins to aggregate and de-mix.

This leads to cataract formation, the world’s leading cause of blindness. This work could shed light on other protein aggregation diseases (such as Alzheimer’s disease), and may one day lead to methods for stabilizing protein interactions and thus preventing these problematic aggregations from occurring.

The eye lens is made up of densely packed crystallin proteins, arranged in such a way that light in the visible wavelength range can pass through. But for a variety of reasons including UV radiation exposure and age, the proteins sometimes change their behavior and clump together. As a result, light is scattered once it enters the lens, resulting in cloudy vision or blindness. There is currently no known way to reverse the protein aggregation process once it has begun. Nearly 5 million people every year undergo cataract surgery in which their lenses are removed and replaced with artificial ones.

Previous research has shown that the interactions between the three major crystallin proteins that make up the concentrated eye lens protein solution are key to cataract formation. A team of scientists from the University of Fribourg, EPFL and the Rochester Institute of Technology (USA) studied the interactions between two of these proteins, at concentrations similar to those found in the eye lens, using a combination of neutron scattering experiments and molecular dynamics computer simulations. They found that a finely tuned combination of attraction and repulsion between the two proteins resulted in an arrangement that was transparent to visible light. “By combining experiments and simulations it became possible to quantify that there had to be a weak attraction between the proteins in order for the eye lens to be transparent,” explains EPFL postdoctoral researcher Giuseppe Foffi, a member of the Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA). “Our results indicate that cataracts may form if this balance of attractions is disrupted, and this opens a new direction for research into cataract formation.”

“Lots of studies have been done on individual proteins in the lens,” adds University of Fribourg physicist and lead author Anna Stradner, “But none on their mixtures at concentrations typically found in the eye. We modeled these proteins as colloidal particles, and found there was a very narrow window in which the protein solution remained stable, and this was a necessary condition for lens transparency.”

In addition to unveiling important new information about the interactions of the proteins in the eye lens, this benchmark study provides a framework for further study into the molecular properties and interactions of proteins. The results suggest that these properties could perhaps be manipulated to prevent aggregation or reverse the aggregation process once it has begun.

Mary Parlange | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>