Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TAU Scientists Help Discover the Most Massive Stellar Black Hole Ever Found

13.11.2007
Sixteen times the mass of our sun, the discovery is expected to serve as a test-bed for studying astrophysics

An international team, including astronomers from Tel Aviv University, has uncovered the most massive stellar black hole found to date in a binary system.

Published in the prestigious journal Nature this week, the research was conducted by an international team including Professor Tsevi Mazeh, who is the director of the Sackler Institute of Astronomy at Tel Aviv University and holds the Oren Family Chair of Experimental Physics, and his Ph.D. student Avi Shporer.

The newly-discovered black hole is about 16 times the mass of our sun and located three million light-years away in a distant galaxy called Messier 33. The finding is unique because the black hole, named M33 X-7, is associated with an unusually large companion star (its binary pair), with a mass about 70 times the mass of our sun. The two objects move one around the other in space once every 3.5 days in an everlasting dance.

A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. The collapse creates an intense gravitational force, where not even rays of light can escape its gravitational pull, rendering the phenomenon invisible. Matter transferred from the companion star into the black hole falls into the hole’s gravitational attraction and emits X-ray radiation that the astronomers have detected by using special satellites.

"Giant telescopes and satellites make it possible for us to discover in space systems that seem to come from a science-fiction film," says Prof. Mazeh. "We are able to study black holes whose existence we were able to imagine only thanks to Einstein's General Theory of Relativity."

This new discovery raises all sorts of questions about how massive black holes are formed. Prof. Mazeh says that these questions illustrate the enormous scale of the universe and the smallness of the Earth within it. "I hope these discoveries will lead scientists and even human society to a degree of modesty," he noted.

The scientific community has known about black holes orbiting companion stars for 40 years. "This discovery raises doubts about theories of how black holes, like this one, are created," said Prof. Jerome Orosz from San Diego State University, the first contributor of the article. Prof. Orosz led the international teams that analyzed data collected by the Chandra X-ray satellite and the Gemini telescope in Hawaii.

Concludes Prof. Mazeh, "Astronomical measurements allow us to peek into the vastness of space and discover epic events incomparable with anything which takes place on earth."

George Hunka | EurekAlert!
Further information:
http://www.tau.ac.il
http://www.aftau.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>