Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aston researchers look beyond the surface

13.11.2007
The Surface Science Group in the School of Engineering & Applied Science at Aston University (under the guidance of Professor John Sullivan) has recently purchased two new state-of-the art surface analytical instruments for probing the outer layers of the surfaces of solids.

Part of Aston’s allocation from the Science Research Investment Fund (SRIF) provided around £700,000 funding for the instruments, which have given Aston the most modern surface analysis instruments available in the world today.

The instruments acquired by the Surface Science Group are a Thermo Fisher ESCALAB 250 imaging X-ray Photoelectron Spectrometer (XPS) and a Thermo Fisher MICROLAB 350 imaging Auger Electron Spectrometer (AES).

Prof Sullivan explained: ‘Surface analysis is concerned with the study and measurement of the physical, chemical and compositional properties of the first one to ten atomic layers. It is the surface which forms the boundary between the environment and/or other materials in contact with that solid. Thus the composition and structure of these outermost layers have a profound effect on the properties and performance of materials and systems in an increasingly wide range of technological and nano-technological applications.

‘Instruments such as these have proved invaluable in the examination, characterisation and understanding of the surface properties of metals, glasses, ceramics, polymers and biological materials and in the study of processes such as adhesion, corrosion, oxidation, biological interactions and drug delivery systems.’

The ESCALAB uses a monochromatic X-ray beam to probe the surfaces and gives information and images of the chemical state of atoms in that surface. The MICROLAB uses a very finely focused electron beam to probe the surface.

The instruments will be used by the Surface Science Group in its present research on nano materials and systems, but should also have much wider use for research within the University.

‘We hope that other research groups at Aston will take advantage of the opportunity to use the best surface analytical instrumentation in the UK today. We would also like to help industry with current problems in the development of new products and processes and also attract new industrially funded research programmes,’ explained Prof Sullivan.

Hannah Brookes | alfa
Further information:
http://www.aston.ac.uk

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>