Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VELO – in you go! LHCb installs its precision silicon detector

13.11.2007
One of the most fragile detectors for the Large Hadron Collider beauty (LHCb) experiment has been successfully installed in its final position. LHCb is one of four large experiments at CERN’s Large Hadron Collider (LHC), expected to start up in 2008.

For the LHCb collaboration, including UK scientists from the Universities of Liverpool and Glasgow, installing the Vertex Locator (VELO) detector into its final location in the underground experimental cavern at CERN has been a challenging task.

“It was a very delicate operation”, said Paula Collins, LHCb-VELO project leader, “With its successful completion, the VELO is now in place and ready for physics.”

Professor Themis Bowcock, lead LHCb scientist from the University of Liverpool where the intricate instrumentation was built and assembled said, “This is a big milestone for VELO and marks an end to the construction side of the project. With each one of the 42 modules that make up the instrument taking 1,000 hours to construct the final installation was a nail biting experience.”

The VELO is a precise particle-tracking detector that surrounds the proton-proton collision point inside the LHCb experiment. At its heart are 84 half-moon shaped silicon sensors, each one connected to its electronics via a delicate system of more than 5000 bond wires. These sensors will be located very close to the collision point, where they will play a crucial role in detecting b quarks, to help in understanding tiny but crucial differences in the behaviour of matter and antimatter.

The sensors are grouped in pairs to make a total of 42 modules, arranged in two halves around the beam line in the VELO vacuum tank. An aluminum sheet just 0.3 mm thick provides a shield between the silicon modules and the primary beam vacuum, with no more than 1 mm of leeway to the silicon modules. Custom-made bellows enable the VELO to retract from its normal position of just 5 mm from the beam line, to a distance 35 mm. This flexibility is crucial during the commissioning of the beam as it travels round the 27-km ring of the LHC.

“The installation was very tricky, because we were sliding the VELO blindly in the detector,” said Eddy Jans, VELO installation coordinator. “As these modules are so fragile, we could have damaged them all and not realized it straight away.” However, the verification procedures carried out on the silicon modules after installation indicated that no damage had occurred.

Dr Chris Parkes, scientist from the University of Glasgow LHCb team, who were responsible for testing the modules, adds, “Now that the VELO is in place we can start work on testing the instrument in situ in the lead up to science operations next year.”

UK scientists have a major involvement with the Vertex Locator. The individual modules were designed and assembled at Liverpool University and scientists from Glasgow University are responsible for the reception and testing of modules at CERN. NIKHEF provided the special foil that interfaces with the LHC vacuum. Other collaborators are EPFL Lausanne, CERN, Syracuse and MPI Heidelberg.

Contacts
Gill Ormrod – Science and Technology Facilities Council Press Office
Tel: +44 (0) 1793 442012.
Mobile: +44 (0) 781 8013509
Email: gill.ormrod@stfc.ac.uk
CERN Press Office
Tel: +44 22 7672141
Email : press.office@cern.ch
http://www.cern.ch/Press
Kate Spark – University of Liverpool Press Office
Tel: +44 (0) 151 794 2247
Email: kate.spark@liv.ac.uk
Martin Shannon - University of Glasgow Press Office
Tel: +44 (0) 141 330 8593
Email: m.shannon@admin.gla.ac.uk
UK Science Contacts
Professor Themis Bowcock – Lead LHCb scientist at the University of Liverpool
Tel: +44 (0) 151 794 3315
Email: tjvb@hep.ph.liv.ac.uk
Dr Tara Shears – LHCb scientist, University of Liverpool
Tel: +44 (0) 151 7943315
Email: tara@hep.ph.liv.ac.uk
Dr Chris Parkes – LHCb scientist, University of Glasgow
Tel: +44 (0) 141 330 5885
Email: parkes@mail.cern.ch

Gill Ormrod | alfa
Further information:
http://www.cern.ch
http://www.lhc.ac.uk
http://hep.ph.liv.ac.uk/~tara/lhcb_outreach/

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>