Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA finds a black-hole flywheel in the Milky Way

26.04.2002


Far away among the stars, in the Ara constellation of the southern sky, a small black hole is whirling space around it. If you tried to stay still in its vicinity, you couldn’t. You’d be dragged around at high speed as if you were riding on a giant flywheel.



In reality, gas falling into the black hole is whirled in that way. It radiates energy, in the form of X-rays, more intensely than it would do if space were still by tapping into the black hole’s internal energy stream.
ESA’s big X-ray detecting satellite, XMM-Newton, was specifically designed to detect this form of energy. With this finding it has chalked up another notable success in its investigations of the black holes - mysterious regions of space where gravity is so strong that light can’t escape. High speeds and intense gravity affect the energy of X-rays emitted from iron atoms very close to a black hole. By detecting the resulting spread of energies, with XMM-Newton, astronomers can diagnose the conditions there.

The weird effect of a spinning black hole on its surroundings is linked to Albert Einstein’s theory of gravity, in which the fabric of space itself becomes fluid. XMM-Newton first discovered such black-hole flywheels in galaxies many millions of light-years away. Now, in findings to be formally reported next month, it sees the same thing much closer to home, in our own Galaxy, the Milky Way.



A US-European team of astronomers made the discovery last September, during an outburst from the vicinity of a black-hole candidate called XTE J1650-500. This object is about 10 times heavier than the Sun. A similar black-hole flywheel in another galaxy, already examined by XMM-Newton, is a million times more massive than that, and 4000 times more distant.

"Now we’ve seen this astonishing behaviour across a great range of distances and masses," comments Matthias Ehle, a member of the team at ESA’s Villafranca satellite station in Spain. "Our hopes that XMM-Newton would vastly improve our understanding of black holes have not been disappointed."

The astronomers describe their observations and their interpretations in a paper to be published in Astrophysical Journal Letters, 10 May 2002. The lead author is Jon Miller of the Massachusetts Institute of Technology.

Monica Talevi | ESA

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>