Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rosetta closes in on Earth – a second time

09.11.2007
ESA’s comet chaser, Rosetta, is on its way to its second close encounter with Earth on 13 November. The spacecraft’s operators are leaving no stones unturned to make sure Earth’s gravity gives it the exact boost it needs en route to its destination.

This month’s Earth swing-by is Rosetta’s third major step on its 10-year journey to 67/P Churyumov-Gerasimenko. The trajectory correction manoeuvre successfully performed last month prepared ESA’s Comet Chaser for the upcoming encounter. The spacecraft is now right on track to gain the right amount of energy from Earth’s gravity and save fuel later on.

Closest approach will take place on 13 November 2007 at 21:57 CET, at which time Rosetta will speed past at 45 000 km/h (about 12.5 km/s) relative to Earth. At this time, Rosetta will be 5301km above the Pacific Ocean, south-west of Chile, at 63° 46’ South and 74° 35’ West.

Why swing by Earth?

Swing-bys make use of the gravitational attraction of planets to modify a spacecraft’s trajectory and to gain the orbital energy needed to reach the final target.

The first Earth swing-by took place on 4 March 2005. On 25 February 2007 Rosetta made its closest approach to Mars, to use its gravity. The swing-by this month will be followed by the third and last swing-by, using Earth’s gravity, on 13 November 2009.

While the gravity-assist manoeuvre at Mars was needed to slow the spacecraft down and head back towards the inner solar system, the second Earth swing by will help Rosetta gain enough energy to reach the outer Solar System through the asteroid belt and observe asteroid Steins, one of its scientific targets. Rosetta will then head back to Earth for the last planned swing-by in November 2009.

The increased energy from this Earth swing-by will help Rosetta cross the asteroid belt for a second time, observe Lutetia (its second target asteroid) and finally rendezvous with comet 67/P Churyumov-Gerasimenko. The rendezvous will take place about 4 astronomical units or 600 million km from the Sun, in 2014.

Intense activity coming up...

During this Earth swing-by, the highest priority will be given to spacecraft operations, as the manoeuvre is critical for the success of the overall mission. In addition, during the incoming and outgoing tracks of the swing-by, Rosetta will be under unfavourable solar illumination and thus temperature conditions. This is why only very limited slots will be available for the instruments to be used safely.

Despite this, a few experiments both on the orbiter and the Philae lander will be activated for calibration, scientific measurements and imaging. The observations are scheduled during and around the time of closest approach, from 7 Nov, 01:00 CET, to 20 Nov, 15:00 CET.

Rosetta will first point to Earth to make observations of the atmosphere and the magnetosphere, including a search for shooting stars from space. It will image urban regions in Asia, Africa and Europe and then point to the Moon and obtain spectra of the illuminated Moon. Flying away after closest approach, Rosetta will image the Earth-Moon system from a distance.

Rosetta will be controlled from ESA’s Spacecraft Operations Centre (ESOC) in Darmstadt, Germany.

For the swing-by, the ESA Web portal is hosting a Rosetta swing-by blog providing frequent updates, news and information direct from the Rosetta Dedicated Control Room at ESOC.

Rosetta swing-by blog is available at:
http://www.esa.int/blog

Gerhard Schwehm | alfa
Further information:
http://www.esa.int/blog
http://www.esa.int/SPECIALS/Rosetta/SEMC20VOM8F_0.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>