Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From molecules to the Milky Way: dealing with the data deluge

08.11.2007
Most people have a few gigabytes of files on their PC. In the next decade, astronomers expect to be processing 10 million gigabytes of data every hour from the Square Kilometre Array telescope.

And with DNA sequencing getting cheaper, scientists will be data mining possibly hundreds of thousands of personal human genome databases, each of 50 gigabytes.

CSIRO has a new research program aimed at helping science and business cope with masses of data from areas like astronomy, gene sequencing, surveillance, image analysis and climate modelling.

The research program, which began this year, is called ‘Terabyte Science’ and is named for the data sets that start at terabytes (thousands of gigabytes) in size, which are now commonplace.

“CSIRO recognises that, for its science to be internationally competitive, the organisation needs to be able to analyse large volumes of complex, even intermittently available, data from a broad range of scientific fields,” says program leader, Dr John Taylor, from CSIRO Mathematical and Information Sciences.

One aspect of the problem is that methods that work with small data sets don’t necessarily work with large ones.

An aim of the program is to develop completely new mathematical approaches and processes for scientists in a range of disciplines to further their research and boost Australia’s position as a world science leader.

“Large and complex data is emerging almost everywhere in science and industry and it will hold back Australian research and business if it isn’t dealt with in a timely way,” Dr Taylor says.

Countries like the US also recognise the challenges, as Dr Taylor has seen first hand in his ten years’ working in laboratories there.

“This will need major developments in computer infrastructure and computational tools. It involves IT people, mathematicians and statisticians, image technologists, and other specialists from across CSIRO all working together in a very focussed way,” he says.

After a workshop in September, specific research areas have been identified and projects are progressing in advanced manufacturing, high throughput image analysis, modelling ocean biogeochemical cycles, situation analysis and environmental modelling.

Andrea Wild | EurekAlert!
Further information:
http://www.csiro.au

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>