Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From molecules to the Milky Way: dealing with the data deluge

Most people have a few gigabytes of files on their PC. In the next decade, astronomers expect to be processing 10 million gigabytes of data every hour from the Square Kilometre Array telescope.

And with DNA sequencing getting cheaper, scientists will be data mining possibly hundreds of thousands of personal human genome databases, each of 50 gigabytes.

CSIRO has a new research program aimed at helping science and business cope with masses of data from areas like astronomy, gene sequencing, surveillance, image analysis and climate modelling.

The research program, which began this year, is called ‘Terabyte Science’ and is named for the data sets that start at terabytes (thousands of gigabytes) in size, which are now commonplace.

“CSIRO recognises that, for its science to be internationally competitive, the organisation needs to be able to analyse large volumes of complex, even intermittently available, data from a broad range of scientific fields,” says program leader, Dr John Taylor, from CSIRO Mathematical and Information Sciences.

One aspect of the problem is that methods that work with small data sets don’t necessarily work with large ones.

An aim of the program is to develop completely new mathematical approaches and processes for scientists in a range of disciplines to further their research and boost Australia’s position as a world science leader.

“Large and complex data is emerging almost everywhere in science and industry and it will hold back Australian research and business if it isn’t dealt with in a timely way,” Dr Taylor says.

Countries like the US also recognise the challenges, as Dr Taylor has seen first hand in his ten years’ working in laboratories there.

“This will need major developments in computer infrastructure and computational tools. It involves IT people, mathematicians and statisticians, image technologists, and other specialists from across CSIRO all working together in a very focussed way,” he says.

After a workshop in September, specific research areas have been identified and projects are progressing in advanced manufacturing, high throughput image analysis, modelling ocean biogeochemical cycles, situation analysis and environmental modelling.

Andrea Wild | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>