Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists see similarities in stream of sand grains, exotic plasma at birth of universe

08.11.2007
Streams of granular particles bouncing off a target in a simple tabletop experiment produce liquid-like behavior also witnessed in a massive research apparatus that simulates the birth of the universe. A team led by the University of Chicago's Sidney Nagel and Heinrich Jaeger report this surprising finding in the Oct. 27-Nov. 2 issue of Physical Review Letters.

"Nature plays the tricks that it knows how to play over and over again," said Nagel, the Stein Freiler Distinguished Service Professor in Physics at Chicago. Nagel and Jaeger co-authored the paper, along with Xiang Cheng, a graduate student in physics at Chicago; German Varas, a graduate student in physics at the University of Chile; and Daniel Citron, a Chicago undergraduate in physics.

Scientists have attained a good understanding of equilibrium phenomena, which are governed primarily by temperature or pressure. But what about phenomena that have been pushed far beyond their equilibrium states, like a jet of sand" What about quark-gluon plasma, the mixture of subatomic particles that existed for perhaps a few millionths of a second after the big bang"

"We really don't know what the right concepts are to describe this," Nagel said. "We love the physics of granular material because it allows us entrée into this question in relatively simple experiments."

In designing their tabletop experiment, the Chicago team addressed a fundamental question about equilibrium: Under what conditions does a collection of molecules, sand grains or other particles behave like a liquid" Macroscopic and subatomic particles sometimes behave in similar ways. The particles in the Chicago experiment are large enough to allow scientists to track under precisely controlled conditions, an option not available on the subatomic scale.

A paper published in 1883 that described the water-bell phenomenon inspired the granular-stream experiment. The paper reports how a stream of water hitting a narrow, flat, circular target becomes transformed into the thin, hollow shape of a bell. Would a stream of granular materials do likewise"

Cheng, the Chicago graduate student, performed an experiment to find out. He blasted globs of glass and copper beads through a tube into a flat target. "The answer is you can in fact see those bells," said Jaeger, a Professor in Physics. "Specifically, we find that the rapid collisions of densely packed particles produce the liquid state that we can then observe afterward, when everything flies apart and produces these beautiful envelope structures."

Scientists have seen similar structures in the quark-gluon plasma experiments conducted at Brookhaven National Laboratory with the Relativistic Heavy Ion Collider. The $500 million RHIC smashes gold atoms into each other at nearly the speed of light. The tabletop Chicago experiment launches jets of granular materials into a flat target at no more than 12 miles an hour.

"There couldn't be anything farther apart than our experiments and those at RHIC," Nagel said. For that very reason, the Chicago team conducted their test under a variety of conditions to ensure that interactions between the granular particles and the air did not affect the experimental result. "The key ingredient is the high density of rapid collisions," Jaeger said.

The similarity between the granular-jet and RHIC experiments are surprising because scientists would expect quantum physics to dominate the results of the latter. Quantum physics typically rules the atomic and subatomic world. Classical physics, meanwhile, applies to the much larger objects of everyday life.

Nevertheless, the RHIC scientists have interpreted their results in a classical way. "They say it's like a liquid. That's a classical concept. Then they ascribe to this liquid such things as viscosity. Well, that's a classical concept," Nagel said. "Some of these phenomena that appear at this very microscopic, quantum scale echo phenomena that occur on the classical scale.

"That's the amazing thing about physics. The laws you have at one level really are the same as at other levels, or at least influence what happens at other levels. Certain principles are just invariant. Conservation of energy and momentum-you can't get away from these things on any scale."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>