Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Light for FAIR at GSI

08.11.2007
Construction of international accelerator facility scheduled to begin in 2008

In a joint communiqué signed November 7, 2007, representatives of the partner countries have announced the go-ahead for construction of the international accelerator facility FAIR. Signing on behalf of Germany was Federal Minister of Education and Research Annette Schavan and Minister-President of the State of Hesse Roland Koch. FAIR, which will be one of the world’s largest accelerator centers, is to be connected to the existing accelerator facility at GSI.

Researchers working at FAIR will have an opportunity to carry out new experiments to investigate matter and the nature of the universe. “FAIR will bring the physics of the universe into the laboratory. This new international accelerator facility will offer researchers from around the world the possibility to explore new dimensions of matter, including antimatter and hot stellar matter,” said Horst Stöcker, Scientific Director of GSI.

Researchers working at FAIR will therefore have an opportunity to investigate antimatter with a view to solving the mystery as to why the universe is almost completely devoid of antimatter, except for minuscule traces, whereas matter itself is “privileged” and constitutes everything else, including our bodies and the world around us.

Researchers at the forthcoming facility will also be able to investigate how stars explode and which processes are involved. According to our present understanding of the universe the chemical elements came into being as a result of powerful stellar explosions — and continue to be formed in this way. This means that in the final analysis all matter, including ourselves, consists of stardust t the remains of exploded stars.

Researchers working at FAIR will also be hoping to discover new forms of matter and thus track down the mystery of dark matter in the universe. Although dark matter makes up more than 90 percent of the matter of the universe, scientists have still not succeeded in observing it directly.

FAIR F the abbreviation stands for “Facility for Antiproton and Ion Research” will feature an accelerator capable of generating antiproton and ion beams of an unparalleled intensity and quality. At the heart of the facility is a double-ring accelerator, 1,100 meters in circumference. Connected to this is a complex system of storage rings and experimental stations. The current GSI accelerators will serve as preaccelerators for the new facility.

GSI first submitted the proposal for FAIR back in 2001. This was produced in cooperation with 700 scientists from universities and research institutes in Germany and abroad. The Scientific Council assessed the project on behalf of Germany’s Federal Ministry of Education and Research (BMBF) and recommended that it should receive funding. In 2003 the BMBF gave the go-ahead under the condition that at least 25 percent of the costs come from international partners.

In the period since 2003 much progress has been made in completing the scientific, technological, and political groundwork for the international accelerator project FAIR. During the preparatory phase, when over 2,500 scientists from Germany and abroad were already working on the development and planning of the new accelerator and experimental facilities, the partner countries were integrated in the FAIR project via a memorandum of understanding.

These international preparations have now led to a communiqué concerning the joint construction of FAIR, which was signed on November 7, 2007. The total costs for the construction of FAIR will amount to €1.2 billion. Germany, the State of Hesse, and the remaining 14 partner countries have initially agreed to release funding of €940 million for the start phase, with Germany bearing 65 percent of those costs, the State of Hesse 10 percent, and the partner countries jointly 25 percent. The partner countries are China, Germany (incl. the State of Hesse), Finland, France, Georgia, UK, India, Italy, Austria, Poland, Rumania, Russia, Sweden, Slovenia, and Spain. As a result the project can now get underway and construction should be completed on schedule. Construction work is due to start in the winter of 2008/09, with the project to be completed by 2015/16.

| alfa
Further information:
http://www.gsi.de/portrait/Pressemeldungen/07112007_e.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>