Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Green Light for FAIR at GSI

Construction of international accelerator facility scheduled to begin in 2008

In a joint communiqué signed November 7, 2007, representatives of the partner countries have announced the go-ahead for construction of the international accelerator facility FAIR. Signing on behalf of Germany was Federal Minister of Education and Research Annette Schavan and Minister-President of the State of Hesse Roland Koch. FAIR, which will be one of the world’s largest accelerator centers, is to be connected to the existing accelerator facility at GSI.

Researchers working at FAIR will have an opportunity to carry out new experiments to investigate matter and the nature of the universe. “FAIR will bring the physics of the universe into the laboratory. This new international accelerator facility will offer researchers from around the world the possibility to explore new dimensions of matter, including antimatter and hot stellar matter,” said Horst Stöcker, Scientific Director of GSI.

Researchers working at FAIR will therefore have an opportunity to investigate antimatter with a view to solving the mystery as to why the universe is almost completely devoid of antimatter, except for minuscule traces, whereas matter itself is “privileged” and constitutes everything else, including our bodies and the world around us.

Researchers at the forthcoming facility will also be able to investigate how stars explode and which processes are involved. According to our present understanding of the universe the chemical elements came into being as a result of powerful stellar explosions — and continue to be formed in this way. This means that in the final analysis all matter, including ourselves, consists of stardust t the remains of exploded stars.

Researchers working at FAIR will also be hoping to discover new forms of matter and thus track down the mystery of dark matter in the universe. Although dark matter makes up more than 90 percent of the matter of the universe, scientists have still not succeeded in observing it directly.

FAIR F the abbreviation stands for “Facility for Antiproton and Ion Research” will feature an accelerator capable of generating antiproton and ion beams of an unparalleled intensity and quality. At the heart of the facility is a double-ring accelerator, 1,100 meters in circumference. Connected to this is a complex system of storage rings and experimental stations. The current GSI accelerators will serve as preaccelerators for the new facility.

GSI first submitted the proposal for FAIR back in 2001. This was produced in cooperation with 700 scientists from universities and research institutes in Germany and abroad. The Scientific Council assessed the project on behalf of Germany’s Federal Ministry of Education and Research (BMBF) and recommended that it should receive funding. In 2003 the BMBF gave the go-ahead under the condition that at least 25 percent of the costs come from international partners.

In the period since 2003 much progress has been made in completing the scientific, technological, and political groundwork for the international accelerator project FAIR. During the preparatory phase, when over 2,500 scientists from Germany and abroad were already working on the development and planning of the new accelerator and experimental facilities, the partner countries were integrated in the FAIR project via a memorandum of understanding.

These international preparations have now led to a communiqué concerning the joint construction of FAIR, which was signed on November 7, 2007. The total costs for the construction of FAIR will amount to €1.2 billion. Germany, the State of Hesse, and the remaining 14 partner countries have initially agreed to release funding of €940 million for the start phase, with Germany bearing 65 percent of those costs, the State of Hesse 10 percent, and the partner countries jointly 25 percent. The partner countries are China, Germany (incl. the State of Hesse), Finland, France, Georgia, UK, India, Italy, Austria, Poland, Rumania, Russia, Sweden, Slovenia, and Spain. As a result the project can now get underway and construction should be completed on schedule. Construction work is due to start in the winter of 2008/09, with the project to be completed by 2015/16.

| alfa
Further information:

More articles from Physics and Astronomy:

nachricht Novel light sources made of 2D materials
28.10.2016 | Julius-Maximilians-Universität Würzburg

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>