Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting stars reveal planetary secrets

06.11.2007
Watching the stars set from the surface of the Earth may be a romantic pastime but when a spacecraft does it from orbit, it can reveal hidden details about a planet’s atmosphere.

The technique is known as stellar occultation. Jean-Loup Bertaux, Service d'Aeronomie du CNRS, France was the first to suggest its use on an ESA mission. It works by watching stars from space, while they drop behind the atmosphere of a planet under investigation, before disappearing from view below the planet’s horizon.

When the stars are shining above the atmosphere, they give off radiation across a wide spread of wavelengths. As the orbit of the spacecraft carries it around the planet, the star appears to sink down, behind the atmosphere of the planet. The atmosphere acts as a filter, blocking out certain wavelengths of the star’s radiation. The key to this technique is that the blocked wavelengths are representative of the molecules and atoms in the planet’s atmosphere.

ESA currently has three spacecraft around three different planets that are using the technique to investigate those atmospheres. Each one is returning unique insights.

Around Earth, ESA’s Envisat mission carries an instrument called GOMOS (Global Ozone Monitoring by Occultation of Stars). As its name suggests, it is designed to study whether the quantity of ozone is increasing now that the use of harmful chemicals has been banned. Since 2002, it has been watching about 400 stars set behind the Earth every day in order to build up a map of the ozone in the Earth’s atmosphere for all latitudes and longitudes.

“It’s still too early to say whether the ozone is recovering or not,” says Bertaux. Nevertheless, as data accumulates, so the instrument is discovering other phenomena that contribute to the amount of ozone in the atmosphere. In January and February of 2004, GOMOS saw a large build up of nitrogen dioxide at an altitude of 65 km.

Nitrogen dioxide is an important gas to trace in the atmosphere because it can destroy ozone. Over the next two months, GOMOS watched as the layer sank to 45 km, clearly destroying ozone as it descended, providing scientists with another piece in the ozone puzzle.

A simplified stellar occultation instrument is onboard ESA’s Mars Express. Since the spacecraft arrived at the Red Planet in 2003, SPICAM (Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars) has observed more than 1000 stellar occultations. This work provides the most detailed description yet of Mars’s upper atmosphere, and reveals persistent haze layers.

Apart from delivering pure science, the data provides practical benefits for future exploration missions. “Atmospheric profiles of Mars are important for designing parachutes for landing craft,” says Bertaux.

The latest addition to this family of instruments is SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) on Venus Express. Venus has a different atmosphere again from Earth or Mars. It is much denser and SPICAV is revealing the temperature and density profiles of the atmosphere to waiting scientists on Earth, who expect to publish their results soon.

“I think the stellar occultation technique is now ‘combat proven’ and should be useful for further long-term studies,” says Bertaux.

Monica Talevi | alfa
Further information:
http://www.esa.int/esaCP/SEMEH3FWB8F_index_0.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>