Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Setting stars reveal planetary secrets

06.11.2007
Watching the stars set from the surface of the Earth may be a romantic pastime but when a spacecraft does it from orbit, it can reveal hidden details about a planet’s atmosphere.

The technique is known as stellar occultation. Jean-Loup Bertaux, Service d'Aeronomie du CNRS, France was the first to suggest its use on an ESA mission. It works by watching stars from space, while they drop behind the atmosphere of a planet under investigation, before disappearing from view below the planet’s horizon.

When the stars are shining above the atmosphere, they give off radiation across a wide spread of wavelengths. As the orbit of the spacecraft carries it around the planet, the star appears to sink down, behind the atmosphere of the planet. The atmosphere acts as a filter, blocking out certain wavelengths of the star’s radiation. The key to this technique is that the blocked wavelengths are representative of the molecules and atoms in the planet’s atmosphere.

ESA currently has three spacecraft around three different planets that are using the technique to investigate those atmospheres. Each one is returning unique insights.

Around Earth, ESA’s Envisat mission carries an instrument called GOMOS (Global Ozone Monitoring by Occultation of Stars). As its name suggests, it is designed to study whether the quantity of ozone is increasing now that the use of harmful chemicals has been banned. Since 2002, it has been watching about 400 stars set behind the Earth every day in order to build up a map of the ozone in the Earth’s atmosphere for all latitudes and longitudes.

“It’s still too early to say whether the ozone is recovering or not,” says Bertaux. Nevertheless, as data accumulates, so the instrument is discovering other phenomena that contribute to the amount of ozone in the atmosphere. In January and February of 2004, GOMOS saw a large build up of nitrogen dioxide at an altitude of 65 km.

Nitrogen dioxide is an important gas to trace in the atmosphere because it can destroy ozone. Over the next two months, GOMOS watched as the layer sank to 45 km, clearly destroying ozone as it descended, providing scientists with another piece in the ozone puzzle.

A simplified stellar occultation instrument is onboard ESA’s Mars Express. Since the spacecraft arrived at the Red Planet in 2003, SPICAM (Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars) has observed more than 1000 stellar occultations. This work provides the most detailed description yet of Mars’s upper atmosphere, and reveals persistent haze layers.

Apart from delivering pure science, the data provides practical benefits for future exploration missions. “Atmospheric profiles of Mars are important for designing parachutes for landing craft,” says Bertaux.

The latest addition to this family of instruments is SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) on Venus Express. Venus has a different atmosphere again from Earth or Mars. It is much denser and SPICAV is revealing the temperature and density profiles of the atmosphere to waiting scientists on Earth, who expect to publish their results soon.

“I think the stellar occultation technique is now ‘combat proven’ and should be useful for further long-term studies,” says Bertaux.

Monica Talevi | alfa
Further information:
http://www.esa.int/esaCP/SEMEH3FWB8F_index_0.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>