Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbus launch puts space law to the test

06.11.2007
Whose law will apply when Europe's Columbus space laboratory joins the US-led International Space Station in December? And what happens if astronauts from different countries get into a fight? Those were two of the questions posed at a meeting in Vienna last month to examine the contributions made by the humanities to the exploration of space.

Columbus is due to be launched into orbit aboard the US space shuttle Atlantis on December 6. It will become part of the International Space Station (ISS) and the most important module supplied by the European Space Agency (ESA).

The conference Humans in Outer Space - Interdisciplinary Odysseys held on October 11-12, was billed as "the first comprehensive trans-disciplinary dialogue on humans in outer space." It brought space scientists face to face with scholars from the humanities including experts in space law. It was organised jointly by the European Science Foundation (ESF), ESA and the Vienna-based European Space Policy Institute (ESPI).

Dr Ulrike Bohlmann, of ESA's legal department, told the conference that space law was based on the Outer Space Treaty of 1967 which she described as "the Magna Carta of spaceflight". It has been ratified by 98 states. Following the tradition of maritime law, the treaty recognises that states have legal jurisdiction within spacecraft registered to them.

Dr Frans von der Dunk, of the International Institute of Air and Space Law at the University of Leiden, said that the space station posed new legal problems as it is being assembled from modules supplied by the United States, Russia and Japan as well as ESA.

The partners rejected an initial proposal that US law should prevail throughout the space station.

"It was agreed that each state registers its own separate elements, which means that you now have a piece of the US annexed to a piece of Europe annexed to a piece of Japan in outer space, legally speaking."

But that didn't solve the problem of Columbus. As a collaborative European project it cannot be registered to any one state and there is no such entity as "Europe" which can exercise legal jurisdiction. So the partners had to find some novel solutions.

First was criminal law - what if one astronaut gets into a fight with another? "They decided that if somebody performs an activity which may be considered criminal, it is in the first instance his own country which is able to exercise jurisdiction," Dr von der Dunk explained.

Another solution was found for patent law. An invention created on the ISS will be patented in the country which has jurisdiction over the module in which the work was done. For Columbus the inventor will have the choice of patenting in either Germany or Italy, the principal contributors to the module. In practice, because of European patent agreements, it does not much matter in which country a patent is filed.

The parties also agreed a new approach to civil liability. What happens if a US astronaut damages equipment in the European part of the space station? "The basic idea is that we all accept our own risks," said Dr von der Dunk. "We are all there together, we all have the same purpose to make the ISS into a big success and we don't want that attitude, that mentality, to be disturbed by the threat of one party suing the other."

Further ahead, whose law will apply if bases are established on the Moon and even on Mars? The Outer Space Treaty says that no nation can lay claim to the Moon. "Outer space, including the Moon and other celestial bodies, is not subject to national appropriation by claim of sovereignty, by means of use or occupation, or by any other means," said Dr Bohlmann.

She dismissed investment schemes which purport to sell property rights on other planets. "You cannot buy a piece of the Moon nor Mars, they are not subject to appropriation and they cannot be sold. You get a beautiful certificate but you do not have the right of ownership on any celestial body. That is like if I were selling you the Eiffel tower."

Jurisdiction on the Moon is not covered by existing treaties, said Dr von der Dunk. "Jurisdiction is not possible on a territorial basis. A base on the Moon can never qualify as the territory of any country in the world, so you have to find other means."

It is also not clear what legal nationality a child born on the Moon would have.

With many nations now active in space, and the prospect of commercial ventures such as tourism and even mining, the need for a clear and binding legal framework to govern space activities is more important than ever. The likelihood of further international agreement on space law seems remote, however, in the present political climate. The UN Moon Agreement of 1979 sets out how states should behave when exploring the Moon and other planets but has only been ratified by 13 countries, none of which has the means to go to the Moon.

Until recently the humanities had little input into European space policy which has been dominated by political and industrial as well as scientific considerations. The conference is developing the 'Vienna Vision on Humans in Outer Space' which will establish a clear voice for a new and broader constituency to contribute to the future of human beings in space.

Thomas Lau | alfa
Further information:
http://www.esf.org/research-areas/space/activities/inif-activities.html

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>