Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST mini-sensor may have biomedical and security applications

05.11.2007
Ultrasensitive prototype device approaches gold standard for magnetic field detection

A tiny sensor that can detect magnetic field changes as small as 70 femtoteslas-equivalent to the brain waves of a person daydreaming-has been demonstrated at the National Institute of Standards and Technology (NIST). The sensor could be battery-operated and could reduce the costs of non-invasive biomagnetic measurements such as fetal heart monitoring. The device also may have applications such as homeland security screening for explosives.

Described in the November issue of Nature Photonics,* the prototype device is almost 1000 times more sensitive than NIST's original chip-scale magnetometer demonstrated in 2004 and is based on a different operating principle. Its performance puts it within reach of matching the current gold standard for magnetic sensors, so-called superconducting quantum interference devices or SQUIDs. These devices can sense changes in the 3- to 40-femtotesla range but must be cooled to very low (cryogenic) temperatures, making them much larger, power hungry, and more expensive.

The NIST prototype consists of a single low-power (milliwatt) infrared laser and a rice-grain-sized container with dimensions of 3 by 2 by 1 millimeters. The container holds about 100 billion rubidium atoms in gas form. As the laser beam passes through the atomic vapor, scientists measure the transmitted optical power while varying the strength of a magnetic field applied perpendicular to the beam. The amount of laser light absorbed by the atoms varies predictably with the magnetic field, providing a reference scale for measuring the field. The stronger the magnetic field, the more light is absorbed.

"The small size and high performance of this sensor will open doors to applications that we could previously only dream about," project leader John Kitching says.

The new NIST mini-sensor could reduce the equipment size and costs associated with some non-invasive biomedical tests. (The body's electrical signals that make the heart contract or brain cells fire also simultaneously generate a magnetic field.) The NIST group and collaborators have used a modified version of the original sensor to detect magnetic signals from a mouse heart.** The new sensor is already powerful enough for fetal heart monitoring; with further work, the sensitivity can likely be improved to a level in the 10 femtotesla range, sufficient for additional applications such as measuring brain activity, the designers say. A femtotesla is one quadrillionth (or a millionth of a billionth) of a tesla, the unit that defines the strength of a magnetic field. For comparison, the Earth's magnetic field is measured in microteslas, and a magnetic resonance imaging (MRI) system operates at several teslas.

To make a complete portable magnetometer, the laser and vapor cell would need to be packaged with miniature optics and a light detector. The vapor cell can be fabricated and assembled on semiconductor wafers using existing techniques for making microelectronics and microelectromechanical systems (MEMS). This design, adapted from a previously developed NIST chip-scale atomic clock, offers the potential for low-cost mass production.

As described in the new paper, NIST scientists demonstrated that the prototype mini-sensor produces a strong signal that changes rapidly with the strength of a magnetic field from the outside world. The device exhibits a consistent minimum level of electromagnetic static, or "white noise," which indicates a stable limit on its overall sensitivity. The authors also estimated that a well-designed compact magnetometer with present sensitivity could operate continuously for weeks on a single AA battery. Magnetometers need to be designed with applications in mind; smaller vapor cells require less power but are also less sensitive. Thus, an application for which low power is critical would benefit from a very small magnetometer, whereas a larger magnetometer would be more suitable for a different application requiring high sensitivity. The NIST work evaluates the tradeoffs between size, power and performance in a quantifiable way.

"This result suggests that millimeter-scale, low-power, inexpensive, femtotesla magnetometers are feasible ... Such an instrument would greatly expand the range of applications in which atomic magnetometers could be used," the paper states.

The NIST device could be used in a heart monitoring technique known as magnetocardiography (MCG), which is sensitive enough to measure fields of few picoteslas emitted by the fetal heart from small currents in heart muscle cells, providing complementary and perhaps better information than an electrocardiogram. With further improvements, the NIST sensor also might be used in magnetoencephalography (MEG), which measures the magnetic fields produced by electrical activity in the brain, helping to pinpoint tumors or determine function of various parts of the brain. The existing mini-sensor likely will be able to detect some brain activity, such as the signals from alpha waves, which are about 1 picotesla in magnitude at a distance of 1 centimeter from the skull surface, but not the fainter signals from the full range of brain function. (Signals of magnitude 1 picotesla are identifiable with a magnetometer sensitivity of 70 femtotesla per root Hertz.) MCG and MEG offer the advantage of not requiring contrast agents or injected tracers as do other medical procedures such as MRI or positron emission tomography (PET).

Potential NIST collaborators are interested in making a portable MEG helmet that could be worn by epileptics to record brain activity before and during seizures. The devices would be much smaller and lighter than the SQUID helmets currently used for such studies. Kitching said the NIST sensor also may have applications in MRI or in airport screening for explosives based on detection of nuclear quadrupole resonance in nitrogen compounds.

As a non-regulatory agency of the Commerce Department, NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

* Vishal Shah, Svenja Knappe, Peter D.D. Schwindt, and John Kitching. Femtotesla Atomic Magnetometry with a Microfabricated Vapor Cell. Nature Photonics. 1 November 2007.

** Brad Lindseth, Peter Schwindt, John Kitching, David Fischer, Vladimir Shusterman. 2007. Non-contact Measurement of Cardiac Electromagnetic Field in Mice Using an Ultra-small Atomic Magnetometer. Feasibility Study. Presented at Computers in Cardiology, Durham, NC, Sept 30-Oct. 3, 2007.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>