Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RIT Study Confirms Supermassive Black Holes Produce Powerful Galaxy-Shaping Winds

02.11.2007
Supermassive black holes can produce powerful winds that shape a galaxy and determine their own growth, confirms a group of scientists from Rochester Institute of Technology.

The RIT team has, for the first time, observed the vertical launch of rotating winds from glowing disks of gas, known as accretion disks, surrounding supermassive black holes in the centers of galaxies. The findings are reported in the Nov. 1 issue of Nature.

Gas flowing into a supermassive black hole first accumulates in a rapidly spinning accretion disk, which forms the engine of a quasar, a type of active galactic nucleus found in some galaxies and an extremely powerful source of radiation.

“Gas flowing in from the galaxy ‘fuels’ the quasar,” says Andrew Robinson, associate professor of physics at RIT and an author of the study. “Gas flowing out from the quasar regulates black hole growth and galaxy formation.”

The RIT team, consisting of Stuart Young, David Axon and Robinson, together with colleagues James Hough and James Smith from the University of Hertfordshire in England, studied the winds of gas coming off the quasar PG 1700+518, located in a galaxy at a distance of approximately 3 billion light-years from Earth. Robinson and Smith obtained the data using the William Herschel Telescope on the Canary Islands.

Previous studies have pointed to the critical role winds play in the early or active phase of a galaxy, when a growing supermassive black hole draws in gas from the surrounding cloud and shines luminously—brighter than all of the stars in a galaxy.

“It has long been thought that such winds are launched from the accretion disk but, until now, this idea has been based on purely theoretical arguments,” says David Axon, professor and head of the physics department at RIT.

The RIT team’s study of PG 1700+518 shows that gas is both moving vertically away from the disk and also rotating at a speed similar to the disk’s rotation speed—direct observational confirmation that the disk is launching a wind. The study also helps to resolve the long-standing mystery of how the accretion disk rids itself of angular momentum—a property associated with rotational motion that inhibits the inward flow of gas towards the central black hole just as it keeps the Earth in orbit around the sun.

“If it wasn’t removed, angular momentum would actually completely stop the accretion and turn off the quasar,” says Young, a post-doctoral fellow at RIT, formerly of the University of Hertfordshire, and the lead author of the paper “The Rotating Wind of the Quasar PG 1700+518.” “Our work suggests that the disk removes some of its excess angular momentum by launching a wind, so allowing accretion to happen in the first place to produce the quasar and allow the black hole to grow.”

Quasar accretion disks are too small to be imaged directly. The RIT team confirmed theories about quasar winds by using polarimetry, a technique that measures the polarization of the light from the quasar, a property that can arise when light, or electromagnetic radiation, is scattered or reflected. This technique gives scientists ways to analyze astronomical sources from different perspectives.

“We can’t actually see the accretion disk,” adds Robinson. “We can see its radiation, but we can’t actually see its structure. In a picture, a quasar looks just like a star, so it’s proven very difficult to confirm these theories by observation.”

He continues: “In quasars, like PG1700+518, we believe that light emitted by the accretion disk becomes polarized because it is scattered by electrons in the wind; the process is similar to scattering of sunlight by molecules in Earth’s atmosphere, which makes the sky appear blue.”

Analyzing changes in the polarization of the light with wavelength, or the property that determines color, can reveal information about the internal structure of a source and the motions of the emitting and scattering gas.

During the last 20 years, studying the polarized light from active galactic nuclei has allowed scientists to make sense of a confusing variety of different types of active galaxy.

“When you look at an active galactic nucleus from above you see one kind of active galaxy,” Robinson says. “When you look at it from the side you see another kind. Polarimetry makes clear that they are the same. Scientists used to think there were different types of active galaxies. Now we know they are only different because we are looking at them from different angles.”
During the next phase of their research, the RIT scientists will analyze the polarization properties of scattered light from many more objects to learn if powerful disk winds are launched only in a relatively short-lived phase, when the black hole is growing rapidly, or if they are launched only by quasars, which have the most massive black holes, or by all active galactic nuclei.

“The polarization process makes this very interesting because you get this discrimination between angles, and you get different viewpoints,” Robinson says. “And so the observed properties of the nucleus depend on angle, whether or not the direct view is obscured.”

Contacts:
Andrew Robinson, associate professor of physics at RIT
axrsps@rit.edu, 585-475-2726
Susan Gawlowicz, senior news specialist, RIT University News Services smguns@rit.edu, 585-475-5061
About RIT: Rochester Institute of Technology is internationally recognized for academic leadership in computing, engineering, imaging technology, and fine and applied arts, in addition to unparalleled support services for students with hearing loss. More than 15,800 full- and part-time students are enrolled in RIT’s 340 career-oriented and professional programs, and its cooperative education program is one of the oldest and largest in the nation.

For nearly two decades, U.S. News & World Report has ranked RIT among the nation’s leading comprehensive universities. The Princeton Review features RIT in its 2007 Best 361 Colleges rankings and named the university one of America’s “Most Wired Campuses.” RIT is also featured in Barron’s Best Buys in Education.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>