Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chameleon particles from the Sun

22.04.2002


The Sun emits electron-neutrinos, elementary particles of matter that have no electric charge and very little mass, created in vast numbers by the thermonuclear reactions that fuel our parent star. Since the early 1970s, several experiments have detected neutrinos arriving on Earth, but they have found only a fraction of the number expected from detailed theories of energy production in the Sun. This meant there was either something wrong with our theories of the Sun, or our understanding of neutrinos. It turns out that our theories of how the Sun is powered look like being correct according to a team of scientists from the UK, the US and Canada whose latest results from research into solar neutrinos were announced on Saturday [20 April 2002]. What`s more, these ghostly particles have `chameleon` type capabilities, changing from one type of neutrino into another on their journey from the Sun to Earth.



The scientists used data taken entirely from the Sudbury Neutrino Observatory [SNO] in Canada which shows without doubt that the number of observed solar neutrinos is only a fraction of the total emitted from the Sun - clear evidence that they have chameleon type properties and change type en-route to Earth.

Says Project Director Art McDonald of Queen`s University, Canada, "These new results show in a clear, simple and accurate way that solar neutrinos change their type. The total number of neutrinos we observe is in excellent agreement with calculations of the nuclear reactions powering the Sun. The SNO team is really excited because these measurements enable neutrino properties to be defined with much greater certainty in fundamental theories of elementary particles."


Neutrinos are known to exist in three types related to three different charged particles - the electron, and its lesser known relatives the muon and the tau. The Sun emits electron neutrinos, which are created in the thermonuclear reactions in the solar core. Previous experiments have found fewer electron neutrinos than suggested by calculations based on how the Sun burns - the famous "solar neutrino problem".


The results announced on Saturday at the Joint American Physical Society/American Astronomical Society meetings in Albuquerque, New Mexico, show that the number of electron-neutrinos detected is about 1/3 of the number expected according to calculations based on the latest sophisticated models of the solar core. The SNO detector uses the unique properties of heavy water - where the hydrogen has an extra neutron in its nucleus - to detect not only electron neutrinos through one type of reaction, but also all three known neutrino types through a different reaction. The total number of all three types of neutrino agrees well with the calculations. This shows unambiguously that electron neutrinos emitted by the Sun have changed to muon or tau neutrinos before they reach Earth.

Dr. Andre Hamer, of Los Alamos National Laboratory, said, "In order to make these measurements we had to restrict the radioactivity in the detector to minute levels and determine both neutrino signals and the detector background very accurately - to show clearly that we are observing neutrinos from the Sun. The care taken throughout this experiment to minimise radioactivity, and the careful calibration and analysis of our data, has enabled us to make these neutrino measurements with great accuracy"

In June last year results from the detection of electron neutrinos at SNO first indicated, with a certainty of 99.9%, that neutrinos change type on their way from the Sun, thus solving the long-standing problem - or so it was thought. However, these conclusions were based on comparisons of the SNO results with those from a different experiment, the Super-Kamiokande detector, located in Japan.

Prof. Dave Wark of the University of Sussex and the Rutherford Appleton Laboratory, Oxford, commented, " Whenever a scientific conclusion relies on two experiments, and on the theory connecting them, it is twice as hard to be certain that you understand what is going on. We are therefore much more certain now that we have really shown that solar neutrinos change type".

The latest results, entirely from the SNO detector, (and which have been submitted to Physical Review Letters) are 99.999% accurate, and are of great importance because of the way in which physicists think that the neutrinos - long thought to be massless particles - change types only happens if the different types have different masses.

Gill Ormrod | alphagalileo

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>