Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chameleon particles from the Sun

22.04.2002


The Sun emits electron-neutrinos, elementary particles of matter that have no electric charge and very little mass, created in vast numbers by the thermonuclear reactions that fuel our parent star. Since the early 1970s, several experiments have detected neutrinos arriving on Earth, but they have found only a fraction of the number expected from detailed theories of energy production in the Sun. This meant there was either something wrong with our theories of the Sun, or our understanding of neutrinos. It turns out that our theories of how the Sun is powered look like being correct according to a team of scientists from the UK, the US and Canada whose latest results from research into solar neutrinos were announced on Saturday [20 April 2002]. What`s more, these ghostly particles have `chameleon` type capabilities, changing from one type of neutrino into another on their journey from the Sun to Earth.



The scientists used data taken entirely from the Sudbury Neutrino Observatory [SNO] in Canada which shows without doubt that the number of observed solar neutrinos is only a fraction of the total emitted from the Sun - clear evidence that they have chameleon type properties and change type en-route to Earth.

Says Project Director Art McDonald of Queen`s University, Canada, "These new results show in a clear, simple and accurate way that solar neutrinos change their type. The total number of neutrinos we observe is in excellent agreement with calculations of the nuclear reactions powering the Sun. The SNO team is really excited because these measurements enable neutrino properties to be defined with much greater certainty in fundamental theories of elementary particles."


Neutrinos are known to exist in three types related to three different charged particles - the electron, and its lesser known relatives the muon and the tau. The Sun emits electron neutrinos, which are created in the thermonuclear reactions in the solar core. Previous experiments have found fewer electron neutrinos than suggested by calculations based on how the Sun burns - the famous "solar neutrino problem".


The results announced on Saturday at the Joint American Physical Society/American Astronomical Society meetings in Albuquerque, New Mexico, show that the number of electron-neutrinos detected is about 1/3 of the number expected according to calculations based on the latest sophisticated models of the solar core. The SNO detector uses the unique properties of heavy water - where the hydrogen has an extra neutron in its nucleus - to detect not only electron neutrinos through one type of reaction, but also all three known neutrino types through a different reaction. The total number of all three types of neutrino agrees well with the calculations. This shows unambiguously that electron neutrinos emitted by the Sun have changed to muon or tau neutrinos before they reach Earth.

Dr. Andre Hamer, of Los Alamos National Laboratory, said, "In order to make these measurements we had to restrict the radioactivity in the detector to minute levels and determine both neutrino signals and the detector background very accurately - to show clearly that we are observing neutrinos from the Sun. The care taken throughout this experiment to minimise radioactivity, and the careful calibration and analysis of our data, has enabled us to make these neutrino measurements with great accuracy"

In June last year results from the detection of electron neutrinos at SNO first indicated, with a certainty of 99.9%, that neutrinos change type on their way from the Sun, thus solving the long-standing problem - or so it was thought. However, these conclusions were based on comparisons of the SNO results with those from a different experiment, the Super-Kamiokande detector, located in Japan.

Prof. Dave Wark of the University of Sussex and the Rutherford Appleton Laboratory, Oxford, commented, " Whenever a scientific conclusion relies on two experiments, and on the theory connecting them, it is twice as hard to be certain that you understand what is going on. We are therefore much more certain now that we have really shown that solar neutrinos change type".

The latest results, entirely from the SNO detector, (and which have been submitted to Physical Review Letters) are 99.999% accurate, and are of great importance because of the way in which physicists think that the neutrinos - long thought to be massless particles - change types only happens if the different types have different masses.

Gill Ormrod | alphagalileo

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>