Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking further into the Universe

22.04.2002


How can the Universe be studied? There is no way to affect a research object of infinite dimensions. It means that the research can only be carried out via observations, employing all methods available. To this end scientists have been inventing more and more powerful telescopes which would enable them to examine closely remote spots of the Universe and to hear a `voice` of the sky at all available bandwidths. The scientists are planning to dispatch to space a cryogen submillimetric telescope called `Submillimetron`, which is supposed to play the role of a supersensitive `ear`. Hopefully, this device will provide astronomers with the first map of the Universe radiation at a 3 THz waveband. It is worth noting that the wavelength of this bandwidth makes tenth parts of a millimetre, it means that the bandwidth is at the boundary between infrared rays and microwave frequency. The stars are almost invisible at submillimetric waves and do not prevent the scientists from seeing remote Galaxies.



The Galaxies are so far away, that the time period required for their radiation to reach the Earth is close to the age of the Universe. By now the scientists have found only a few such remote Galaxies with the help of optic telescopes, while `Submillimetron` will find about a million of such objects, this invention will reveal an almost unexplored world. A team of the experienced scientists from Sweden, Finland and Russia are developing the unique device. The Russian party is represented by Academician N. Kardashev, who is heading the research activities of the project, the following entities being involved in the project implementation: Centre of Astronomy and Space, (Physical Institute of the Academy of Sciences), Institute of Physical Problems (Russian Academy of Sciences), Institute of Radio Engineering and Electronics (Russian Academy of Sciences) as well as Space Rockets Corporation `Energy`, which is in charge of the telescope delivery to the space station.

It is impossible to perceive THz-radiation on the Earth - it is overlapped by the infrared radiation. That is why the telescope is to be transported to space `to listen to the stars` without disturbances, although even in space the telescope will have to be screened -from the solar and earth radiation in this case.


The sensor of the new telescope is the so-called energy absorber. It is a small metal `wire`, or film, to be more precise, 5 microns long, 0.2 microns wide and less than 0.02 microns thick. This wire is a core of the antenna. The `wire` is made of a non-superconducting metal, the ends of the wire being connected to superconducting electrodes (made of aluminium or niobium).

At an extremely low temperature (0.1 ?) the galactic noise, focused on the sensor of the antenna, heats up the conduction electrons in a non-superconducting metal. To find and to record this tiny change of the electric current, the specialists of the Physical Faculty, Moscow State University are producing a special chip, containing an amplifier and a commutator. Due to it, a minor change of the electric current can be transformed into the voltage change.

Despite the seeming simplicity of the physical idea, it is not easily implemented. The scientists are still facing a lot of problems as regards to the efficiency of heating the electrons at this radiation bandwidth. However, the researchers are confident that these issues can be solved. And pretty soon, in about five years, we shall be able to hear the `voice` of the sky at a new bandwidth. With the help of this new device the astronomers and physicists will be able to answer the questions they are not even thinking about yet. Probably, they will hear the voice of an extraterrestrial civilisation. Or perhaps, they will discover something absolutely new, for instance, a type of substance previously unknown. Anyway, the researchers will acquire new opportunities to study the Universe.

Olga Maksimenko | alphagalileo

More articles from Physics and Astronomy:

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

nachricht Creative use of noise brings bio-inspired electronic improvement
26.09.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>