Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Looking further into the Universe

22.04.2002


How can the Universe be studied? There is no way to affect a research object of infinite dimensions. It means that the research can only be carried out via observations, employing all methods available. To this end scientists have been inventing more and more powerful telescopes which would enable them to examine closely remote spots of the Universe and to hear a `voice` of the sky at all available bandwidths. The scientists are planning to dispatch to space a cryogen submillimetric telescope called `Submillimetron`, which is supposed to play the role of a supersensitive `ear`. Hopefully, this device will provide astronomers with the first map of the Universe radiation at a 3 THz waveband. It is worth noting that the wavelength of this bandwidth makes tenth parts of a millimetre, it means that the bandwidth is at the boundary between infrared rays and microwave frequency. The stars are almost invisible at submillimetric waves and do not prevent the scientists from seeing remote Galaxies.



The Galaxies are so far away, that the time period required for their radiation to reach the Earth is close to the age of the Universe. By now the scientists have found only a few such remote Galaxies with the help of optic telescopes, while `Submillimetron` will find about a million of such objects, this invention will reveal an almost unexplored world. A team of the experienced scientists from Sweden, Finland and Russia are developing the unique device. The Russian party is represented by Academician N. Kardashev, who is heading the research activities of the project, the following entities being involved in the project implementation: Centre of Astronomy and Space, (Physical Institute of the Academy of Sciences), Institute of Physical Problems (Russian Academy of Sciences), Institute of Radio Engineering and Electronics (Russian Academy of Sciences) as well as Space Rockets Corporation `Energy`, which is in charge of the telescope delivery to the space station.

It is impossible to perceive THz-radiation on the Earth - it is overlapped by the infrared radiation. That is why the telescope is to be transported to space `to listen to the stars` without disturbances, although even in space the telescope will have to be screened -from the solar and earth radiation in this case.


The sensor of the new telescope is the so-called energy absorber. It is a small metal `wire`, or film, to be more precise, 5 microns long, 0.2 microns wide and less than 0.02 microns thick. This wire is a core of the antenna. The `wire` is made of a non-superconducting metal, the ends of the wire being connected to superconducting electrodes (made of aluminium or niobium).

At an extremely low temperature (0.1 ?) the galactic noise, focused on the sensor of the antenna, heats up the conduction electrons in a non-superconducting metal. To find and to record this tiny change of the electric current, the specialists of the Physical Faculty, Moscow State University are producing a special chip, containing an amplifier and a commutator. Due to it, a minor change of the electric current can be transformed into the voltage change.

Despite the seeming simplicity of the physical idea, it is not easily implemented. The scientists are still facing a lot of problems as regards to the efficiency of heating the electrons at this radiation bandwidth. However, the researchers are confident that these issues can be solved. And pretty soon, in about five years, we shall be able to hear the `voice` of the sky at a new bandwidth. With the help of this new device the astronomers and physicists will be able to answer the questions they are not even thinking about yet. Probably, they will hear the voice of an extraterrestrial civilisation. Or perhaps, they will discover something absolutely new, for instance, a type of substance previously unknown. Anyway, the researchers will acquire new opportunities to study the Universe.

Olga Maksimenko | alphagalileo

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>