Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space mission Xeus probes origins of the universe

01.11.2007
Leicester Professor in the vanguard of pioneering new project

A University of Leicester astrophysicist is playing a pivotal role in a mission that seeks to study the origins of the universe.


Professor Martin Turner of the Department of Physics and Astronomy is Co-Principal Investigator on XEUS - a next-generation X-ray space observatory.

XEUS, which stands for X-ray Evolving Universe Spectroscopy, aims to study the fundamental laws of the Universe. With unprecedented sensitivity to the hot, million-degree universe, XEUS will explore key areas of contemporary astrophysics: growth of supermassive black holes, cosmic feedback and galaxy evolution, evolution of large-scale structures, extreme gravity and matter under extreme conditions, the dynamical evolution of cosmic plasmas and cosmic chemistry.

Professor Turner is also Chair of the XEUS International Steering committee. He said: “XEUS is an X-ray observatory 30-50 times more sensitive than XMM-Newton, which will be placed 1.5 million km from Earth, beyond the Moon, at the second Lagrangian point, a quiet stable location where the instruments can observe the universe undisturbed.

“Because it is so large, the observatory has two spacecraft. The five-metre diameter X-ray lens is in one, and the instruments in another. The two spacecraft fly together, 35 metres apart, to keep the instruments at the focus of the lens.

“XEUS has been selected for study by ESA as part of its Cosmic Vision programme. If the study outcome is successful it will be launched on Ariane 5 from Kourou in 2018.

"We have been developing the XEUS concept for an advanced X-ray observatory, for many years. This acceptance by ESA is a major step forward for X-ray astronomers all over the world."

"The million degree universe, where gravity is the main source of energy, is the finest physics laboratory we have. XEUS will help us find out about the behaviour of matter under extreme conditions of temperature, pressure, and gravity. It will also let us study the influence of black holes on the formation of galaxies and stars; and ultimately planets and ourselves."

Dr Richard Willingale, of the University of Leicester and chairman of the XEUS telescope working group said.

“XEUS will use new lightweight silicon optics to make the lens, the same material used to make silicon chips; one of the instruments has sensors cooled to within a tiny fraction of absolute zero to study the chemistry and physics of matter surrounding black holes.”

Various international Space Agencies have expressed interest in cooperation in XEUS and discussions will start by the end of the year to ensure the earliest involvement in study work.

All the candidate missions are now competing in an assessment cycle which ends in 2011. Before the end of the cycle, there will be an important selection foreseen in 2009. At the end of this process, two missions will be proposed for implementation to ESA's Science Programme Committee, with launches planned for 2017 and 2018 respectively.

The selected missions fit well within the themes of ESA's Cosmic Vision 2015-2025 plan. The themes range from the conditions for life and planetary formation, to the origin and formation of the Solar System, the fundamental laws of our cosmos and the origin, structure and evolution of the Universe.

“The maturity of most of the proposals received demonstrates the excellence of the scientific community in Europe. This made the task of the SSAC very difficult but we believe that the set of selected missions will shape the future of European space science,” said Tilman Spohn, chairperson of the SSAC (German Aerospace Center, Berlin). “The next decade will indeed be very exciting for the scientific exploration of space.”

According to the chair of the Astronomy Working Group (AWG), Tommaso Maccacaro, (INAF – Osservatorio Astronomico di Brera) “The chosen candidates for astronomy missions show very promising and broad scientific return and have received excellent recommendations also from external referees.”

“Technical feasibility and potential for successful cooperation with other agencies are two factors which are clearly evident in the Solar System missions that have been chosen,” added Nick Thomas at the Physikalisches Institut, Universität Bern, chair of the Solar System Working Group.

In 2004, Professor Turner was honoured with a CBE for services to X-ray astronomy. Paying tribute to his colleague, Professor George Fraser, Director of the Space Research Centre, said at the time: “The award of a CBE to Martin Turner is very well-deserved recognition of a tremendous contribution to the field of X-ray Astronomy in a career of over thirty years here at Leicester. Martin has, perhaps uniquely, led the development of three major instruments in the field -launched on the EXOSAT (1983), Ginga (1987) and XMM-Newton (1999) –of which he is Principal Investigator- satellites. The last of these - the EPIC camera -has now performed flawlessly in orbit for four years. Martin, nothing daunted, is also heavily involved in the initial design stages of the successor to XMM, a giant European observatory called XEUS.”

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>