Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hertfordshire Astronomers gather new evidence about stars in our Galaxy and distant quasars

31.10.2007
Astronomers from the Centre for Astrophysics Research at the University of Hertfordshire have provided the first evidence as to why stars are able to continue to accrete matter and grow, and how quasars can continue to fuel themselves preventing them from switching off.

The results will be reported in two papers in the 1st November issue of Nature.

Although the papers deal with two entirely different types of objects, newly forming stars in our Galaxy and distant quasars, they solve very similar problems that have lacked direct observational evidence in tackling them.

Stars form from molecular gas clouds which collapse under gravity. However, as the cloud collapses it spins up, gaining angular momentum – which depends on the mass and rotational speed, and the clouds should fly apart preventing the star forming. Yet we know stars do form! It has been known for sometime that newly forming stars produce jets and outflows of material but their exact role and how the jets are constrained and don’t simply dissipate, has not been clear. The University of Hertfordshire team, using the Anglo-Australian Observatory, NSW, Australia, studied the jets associated with a young star, and showed that helical magnetic fields, rather like the coils of a spring, are able to keep the jets collimated and that this aids the removal of angular momentum, thereby allowing the star to increase its mass.

Quasars are the very bright cores of galaxies and are believed to be powered by supermassive black holes. These have masses billions of times that of the Sun, and material is fed into the black hole through a disk of material around it, known as an accretion disk. As material is accreted onto the disk, it starts to spin very quickly and this prevents further material being added, and the quasar would then run out of new fuel and switch off. Observations at the William Herschel Telescope La Palma, made by teams from the University of Hertfordshire and the Rochester Institute of Technology, New York, have shown that powerful rotating winds are launched from the accretion disk, and this reduces the angular momentum of the disk and allows the black hole to be fed and the quasar to continue shining brightly.

Observations for both discoveries used optical and infrared instruments sensitive to the polarization of light (as are Polaroid sun glasses). “The University of Hertfordshire has a world reputation for astronomical polarimetry”, said Professor James Hough, Director of Astronomy Research, and added that “these results showed that polarimetry is a key technique in many areas of astrophysics ranging from stars to distant quasars”.

Helene Murphy | alfa
Further information:
http://www.herts.ac.uk

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>