Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hertfordshire Astronomers gather new evidence about stars in our Galaxy and distant quasars

Astronomers from the Centre for Astrophysics Research at the University of Hertfordshire have provided the first evidence as to why stars are able to continue to accrete matter and grow, and how quasars can continue to fuel themselves preventing them from switching off.

The results will be reported in two papers in the 1st November issue of Nature.

Although the papers deal with two entirely different types of objects, newly forming stars in our Galaxy and distant quasars, they solve very similar problems that have lacked direct observational evidence in tackling them.

Stars form from molecular gas clouds which collapse under gravity. However, as the cloud collapses it spins up, gaining angular momentum – which depends on the mass and rotational speed, and the clouds should fly apart preventing the star forming. Yet we know stars do form! It has been known for sometime that newly forming stars produce jets and outflows of material but their exact role and how the jets are constrained and don’t simply dissipate, has not been clear. The University of Hertfordshire team, using the Anglo-Australian Observatory, NSW, Australia, studied the jets associated with a young star, and showed that helical magnetic fields, rather like the coils of a spring, are able to keep the jets collimated and that this aids the removal of angular momentum, thereby allowing the star to increase its mass.

Quasars are the very bright cores of galaxies and are believed to be powered by supermassive black holes. These have masses billions of times that of the Sun, and material is fed into the black hole through a disk of material around it, known as an accretion disk. As material is accreted onto the disk, it starts to spin very quickly and this prevents further material being added, and the quasar would then run out of new fuel and switch off. Observations at the William Herschel Telescope La Palma, made by teams from the University of Hertfordshire and the Rochester Institute of Technology, New York, have shown that powerful rotating winds are launched from the accretion disk, and this reduces the angular momentum of the disk and allows the black hole to be fed and the quasar to continue shining brightly.

Observations for both discoveries used optical and infrared instruments sensitive to the polarization of light (as are Polaroid sun glasses). “The University of Hertfordshire has a world reputation for astronomical polarimetry”, said Professor James Hough, Director of Astronomy Research, and added that “these results showed that polarimetry is a key technique in many areas of astrophysics ranging from stars to distant quasars”.

Helene Murphy | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>