Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hertfordshire Astronomers gather new evidence about stars in our Galaxy and distant quasars

31.10.2007
Astronomers from the Centre for Astrophysics Research at the University of Hertfordshire have provided the first evidence as to why stars are able to continue to accrete matter and grow, and how quasars can continue to fuel themselves preventing them from switching off.

The results will be reported in two papers in the 1st November issue of Nature.

Although the papers deal with two entirely different types of objects, newly forming stars in our Galaxy and distant quasars, they solve very similar problems that have lacked direct observational evidence in tackling them.

Stars form from molecular gas clouds which collapse under gravity. However, as the cloud collapses it spins up, gaining angular momentum – which depends on the mass and rotational speed, and the clouds should fly apart preventing the star forming. Yet we know stars do form! It has been known for sometime that newly forming stars produce jets and outflows of material but their exact role and how the jets are constrained and don’t simply dissipate, has not been clear. The University of Hertfordshire team, using the Anglo-Australian Observatory, NSW, Australia, studied the jets associated with a young star, and showed that helical magnetic fields, rather like the coils of a spring, are able to keep the jets collimated and that this aids the removal of angular momentum, thereby allowing the star to increase its mass.

Quasars are the very bright cores of galaxies and are believed to be powered by supermassive black holes. These have masses billions of times that of the Sun, and material is fed into the black hole through a disk of material around it, known as an accretion disk. As material is accreted onto the disk, it starts to spin very quickly and this prevents further material being added, and the quasar would then run out of new fuel and switch off. Observations at the William Herschel Telescope La Palma, made by teams from the University of Hertfordshire and the Rochester Institute of Technology, New York, have shown that powerful rotating winds are launched from the accretion disk, and this reduces the angular momentum of the disk and allows the black hole to be fed and the quasar to continue shining brightly.

Observations for both discoveries used optical and infrared instruments sensitive to the polarization of light (as are Polaroid sun glasses). “The University of Hertfordshire has a world reputation for astronomical polarimetry”, said Professor James Hough, Director of Astronomy Research, and added that “these results showed that polarimetry is a key technique in many areas of astrophysics ranging from stars to distant quasars”.

Helene Murphy | alfa
Further information:
http://www.herts.ac.uk

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>