Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New evidence for organic compounds in deep space

19.04.2002


The mysterious spectral bands in the infrared of interstellar gas clouds in deep space originate from organic compounds. Research by the Nijmegen physicist Hans Piest confirms this. He has provided new experimental evidence for this almost 30-year-old problem in astronomy.



Each molecule has specific wavelengths at which it can either absorb or emit light. This forms the fingerprint of a substance. With this fingerprint, astronomers can demonstrate the presence of a substance in a distant star or cloud. In a wide range of lines of sight, in the almost empty interstellar space, bright infrared emission is observed, the spectrum of which has become commonly known as the “Unidentified Infrared Bands”. The most widely accepted hypothesis is that complex organic compounds cause the bands. Put more precisely it is thought to be a mixture of various polyaromatic hydrocarbons, each containing about fifty carbon atoms. Nobody had yet succeeded in measuring the spectrum of these complex molecules under conditions comparable to the cold gas situation in deep space where these spectra are found. In deep space the molecules are so far apart that they no longer collide with each other. Collisions dramatically influence the spectrum. It is difficult to create a collision-free situation in the laboratory. Furthermore, the substance is so rarefied that a spectrum can scarcely be measured. Hans Piest found a way of measuring the spectrum indirectly. For this he made use of a special laser from the Institute for Plasma Physics (FOM) in Rijnhuizen. It is a free-electron laser which can produce every desired wavelength between 5 and 250 microns. There are only a few examples of this type of laser in the world. The physicist synthesised polyaromatic hydrocarbons and bound each of these molecules to a noble gas atom. This can only be done at a temperature just above absolute zero. The bonding energy of noble gas atoms is so small that it scarcely affects the spectrum. In order to investigate which wavelengths this complex can absorb he bombarded its with laser light, using a different wavelength for each bombardment. The light from this laser is sufficient to disassociate the weakly bound noble gas molecule from the organic compound. A sensitive mass spectrometer was able to determine whether the organic substance was produced as a function of the infrared wavelength. The physicist used various noble gas atoms and repeatedly obtained the same spectrum. This strongly indicates that the noble gas did not disrupt the spectrum. The spectra measured strongly agreed with previously disputed measurements from NASA. They had directly determined the very weak absorption spectrum of various sorts of polyaromatic hydrocarbons frozen in noble gas ice. These measurements were controversial because the influence of the noble gas ice was difficult to estimate. Now the question still remains as to exactly which polyaromatics are found in space.

Michel Philippens | alphagalileo

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>