Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New evidence for organic compounds in deep space


The mysterious spectral bands in the infrared of interstellar gas clouds in deep space originate from organic compounds. Research by the Nijmegen physicist Hans Piest confirms this. He has provided new experimental evidence for this almost 30-year-old problem in astronomy.

Each molecule has specific wavelengths at which it can either absorb or emit light. This forms the fingerprint of a substance. With this fingerprint, astronomers can demonstrate the presence of a substance in a distant star or cloud. In a wide range of lines of sight, in the almost empty interstellar space, bright infrared emission is observed, the spectrum of which has become commonly known as the “Unidentified Infrared Bands”. The most widely accepted hypothesis is that complex organic compounds cause the bands. Put more precisely it is thought to be a mixture of various polyaromatic hydrocarbons, each containing about fifty carbon atoms. Nobody had yet succeeded in measuring the spectrum of these complex molecules under conditions comparable to the cold gas situation in deep space where these spectra are found. In deep space the molecules are so far apart that they no longer collide with each other. Collisions dramatically influence the spectrum. It is difficult to create a collision-free situation in the laboratory. Furthermore, the substance is so rarefied that a spectrum can scarcely be measured. Hans Piest found a way of measuring the spectrum indirectly. For this he made use of a special laser from the Institute for Plasma Physics (FOM) in Rijnhuizen. It is a free-electron laser which can produce every desired wavelength between 5 and 250 microns. There are only a few examples of this type of laser in the world. The physicist synthesised polyaromatic hydrocarbons and bound each of these molecules to a noble gas atom. This can only be done at a temperature just above absolute zero. The bonding energy of noble gas atoms is so small that it scarcely affects the spectrum. In order to investigate which wavelengths this complex can absorb he bombarded its with laser light, using a different wavelength for each bombardment. The light from this laser is sufficient to disassociate the weakly bound noble gas molecule from the organic compound. A sensitive mass spectrometer was able to determine whether the organic substance was produced as a function of the infrared wavelength. The physicist used various noble gas atoms and repeatedly obtained the same spectrum. This strongly indicates that the noble gas did not disrupt the spectrum. The spectra measured strongly agreed with previously disputed measurements from NASA. They had directly determined the very weak absorption spectrum of various sorts of polyaromatic hydrocarbons frozen in noble gas ice. These measurements were controversial because the influence of the noble gas ice was difficult to estimate. Now the question still remains as to exactly which polyaromatics are found in space.

Michel Philippens | alphagalileo

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>