Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microfluidics and optical trapping integrated for the first time in new lab-on-a-chip research

29.10.2007
Researchers at Cornell University for the first time have integrated optical functions with microfluidic ones, enabling the sorting of particles by light.

Reported in the Oct. 29 issue of Optics Express, due out Monday, the Cornell team showcases a new design for a "lab-on-a-chip" structure that provides the ability to move or sort particles using light. In addition to the advance in telecom and datacom applications this brings, the new architecture also lends itself to applications in biodetection, including the sorting of viruses and protein recognition.

Summary

This novel architecture, created by lead researcher Michal Lipson and her group and David Erickson and his group, is made up of a field of solid core waveguides. The waveguides are fabricated from SU-8, a material whose mechanical hardness and chemical resistance make it a source for use in lab-on-chip analysis systems. The waveguides used in the device achieve a much more efficient sorting process, which enables trapping and sorting much smaller spheres with much lower intensities than what has been previously reported. By integrating these waveguides on a chip, a massive parallel sorting system may be created. This sorting system would allow for hundreds of measurements in parallel on a 1x1 cm chip, introducing a portable system that provides greater efficiency and lower cost than the current methodologies.

Key Findings

This is the first demonstration of complete integration of planar optical waveguides with microfluidic ones.

This integrated system allows researchers to use light to control the movement of particles in a pressure-driven flow.

The planar optofluidic architecture developed represents a simple yet functional optical manipulation system for lab-on-chip applications.

The use of planar photonic structures in microfluidic devices removes the need for table-top free-space optics, potentially reducing costs and increasing platform portability.

Such a system could find application in high-stability particle trapping and sorting, but also in biodetection by exploiting the strong light interaction between the particle and the evanescent field.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>