Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble spies shells of sparkling stars around quasar

29.10.2007
Research, led by Gabriela Canalizo of the University of California, Riverside, points to a spectacular collision of galaxies

New images taken with NASA’s Hubble Space Telescope – part of a research project led by UC Riverside’s Gabriela Canalizo – have revealed the wild side of an elliptical galaxy, nearly two billion light-years away, that previously had been considered mild-mannered.

The Hubble photos show shells of stars around a bright quasar, known as MC2 1635+119, which dominates the center of the galaxy. The presence of the shells is an indication of a titanic clash with another galaxy in the relatively recent past.

The collision, which is funneling gas into the galaxy’s center, is feeding a supermassive black hole. The accretion onto the black hole is the quasar’s energy-source.

“This observation supports the idea that some quasars are born from interactions between galaxies,” said Canalizo, an assistant professor of astrophysics in the Department of Physics and Astronomy, and a member of the Institute of Geophysics and Planetary Physics. “It also provides more evidence that mergers are crucial for triggering quasars. Most quasars were active in the early universe, which was smaller, so galaxies collided more frequently.

“Astronomers have long speculated that quasars are fueled by interactions that bring an inflow of gas to the black holes in the centers of galaxies. Since this quasar is relatively nearby, it is a great laboratory for studying how more distant quasars are turned on.”

Study results will appear in the Nov. 10 issue of The Astrophysical Journal.

Canalizo explained that the period of time when the central black hole of a galaxy is actively accreting material as a quasar is believed to be an essential phase in the evolution of most galaxies.

“For many decades now, there has been much debate regarding whether galaxy mergers or collisions are responsible for fueling their central black holes and turning them into quasars,” she said.

Discovered nearly 50 years ago, quasars are among the brightest objects in the universe. They reside in the centers of galaxies and are powered by supermassive black holes.

Previous studies of the MC2 1635+119 galaxy with ground-based telescopes showed a normal-looking elliptical containing an older population of stars. It took the razor-sharp vision of Hubble’s Advanced Camera for Surveys and the spectroscopic acuity of the W.M. Keck Observatory in Hawaii to uncover the faint, thin shells.

The new Hubble observations reveal at least five inner shells and additional debris traveling away from the galaxy’s center. The shells, which sparkle with stars, resemble ripples forming in a pond when a stone is tossed in. They formed when a galaxy was shredded by tidal forces during the collision. Some of the galaxy’s stars were swept up in the elliptical galaxy’s gravitational field, creating the outward-moving shells. The farthest shell is about 40,000 light-years away from the center.

“This is the most spectacular shell galaxy seen at this distance,” said team member Francois Schweizer of the Carnegie Observatories in Pasadena, California.

Computer simulations estimate that the encounter happened 1.7 billion years ago. The merger itself occurred over a few hundred million years and stoked a flurry of star birth. Spectroscopic data from Keck reveal that many of the stars in the galaxy are 1.4 billion years old, consistent with the age of the merger.

The shell stars are mixing with the stars in the galaxy as they travel outward. Eventually, the shells will dissipate and the stars will be scattered throughout the galaxy.

“This could be a transitory phase, common to most ellipticals, that lasts only 100 million to a billion years,” Canalizo said. “So, seeing these shells tells us that the encounter occurred in the relatively recent past. Hubble caught the shells at the right time.”

Canalizo and her team have yet to determine the type of merger responsible for the shells and the quasar activity. Their evidence, however, points to two possible collision scenarios.

“The shells’ formation and the current quasar activity may have been triggered by an interaction between two large galaxies or between a large galaxy and a smaller galaxy,” explained team member Nicola Bennert of UCR, who did all of the data processing and quantitative measurements, as well as a large fraction of the analysis. “We need high-resolution spectroscopic observations of the quasar host galaxy to determine the type of merger.”

The quasar is part of an Advanced Camera for Surveys study of five galaxies, all roughly 2 billion light-years away, that are known to harbor quasars. According to Canalizo, the other four galaxies analyzed also display evidence of encounters. Her team also is using Hubble’s Wide Field Planetary Camera 2 to sample 14 more galaxies with quasars.

“We want to know whether most quasars at current epochs begin their lives as mergers, or whether they simply occur in old ellipticals to which nothing very interesting has happened recently,” Canalizo said.

Canalizo, Bennert and Schweizer were joined in the study by UCR’s Bruno Jungwiert, who was in charge of the numerical simulations; Alan Stockton of the University of Hawaii, Honolulu; Mark Lacy of the California Institute of Technology, Pasadena; and Chien Peng of the Herzberg Institute of Astrophysics in Victoria, British Columbia.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>