Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Possible cosmic defect may be a window into the early universe

26.10.2007
An unusual cold spot in the oldest radiation in the universe, the cosmic microwave background, may be caused by a cosmic defect created just after the Big Bang, a Spanish and U.K. research team has found.

Although these findings need confirmation with further research, the suggestion may provide cosmologists with a long-sought clue about how the infant universe evolved.

This study will be published online by the journal Science, at the Science Express website, on 25 October, 2007. Science is published by AAAS, the nonprofit science society.

“These findings open up the possibility of looking for cosmic defects, similar to crystal defects, in the fabric of the universe. Although their existence has been proposed by theorists for decades, no defects have been seen. The jury is still out on the cold spot’s origin, but this surprising finding will be testable and may lead to new views of the cosmos in its infancy in years to come,” said Joanne Baker, associate editor at Science.

“Science is honored to be publishing this important research, and it seems fitting that an international collaboration between Spanish and British scientists be presented the same week that Spain is celebrating the importance of scientific achievement, through the Prince of Asturias Awards,” she said.

The research team, led by Marcos Cruz of the Instituto de Fisica de Cantabria, in Santander, Spain, was careful to say that they have not definitively discovered a defect. Rather, they have found evidence in the cosmic microwave background -- the frozen map of the early universe from the time when the first atoms formed and became separate from photons, hundreds of thousands of years after the Big Bang -- that could be explained by the presence of a defect.

Because defects would have formed at extremely high temperatures, at particle energies far in excess of those achievable at laboratory accelerators, their properties would provide physicists with powerful clues as to the fundamental nature of elementary particles and forces.

"It will be very interesting to see whether this tentative observation firms up in coming years. If it does, the implications will be extraordinary. The properties of the defect will provide an absolutely unique window onto the unification of particles and forces," said Neil Turok of the University of Cambridge in Cambridge, United Kingdom, who is a coauthor of the Science study.

Shortly after the Big Bang, the universe began to cool and expand, undergoing a variety of phase transitions -- more exotic versions of the gas-liquid-solid transitions that matter experiences on Earth.

In both the early universe and the average kitchen freezer, when matter changes phase, it does so irregularly. In an ice cube, for example cloudy spots mark defects that formed as the water crystallized.

In the mid-1970's, particle physicists realized that different sorts of defects should also have developed as various particles separated from the infant universe's hot plasma.

One such defect, known as a texture, is “a three-dimensional object like a blob of energy. But within the blob the energy fields making up the texture are twisted up,” according to Turok.

Textures and other defects should be detectable as temperature variations in the cosmic microwave background.

“The cosmic microwave background is the most ancient image we have of the universe and therefore it’s one of the most valuable tools to understand the universe’s origins. If this spot is a texture, it would allow us to discriminate among different theories that have been proposed for how the universe evolved,” said Cruz.

When Turok and his colleagues first described cosmic texture and showed how it might be detected, the cosmic microwave background hadn’t been mapped accurately enough to detect them. But since 2001, the Microwave Anisotropy Probe, also known as WMAP, has provided a detailed survey of the temperature changes across the cosmic microwave background.

The Science study began with Cruz and his colleagues at the Instituto de Física de Cantabria puzzling over an unusual cold spot in the WMAP data and trying to figure out what could have caused it. When the problem defied all explanations other than a defect, they brought their problem to Turok.

The research team then analyzed WMAP data and determined that the cold spot had the properties that would be expected if it had been caused by a cosmic texture.

“Now, here is an example where this exotic theory trumps more mundane ones,” said Baker.

"We're not certain this is a texture by any means. The probability that it's just a random fluctuation is about 1 percent. But what makes this so interesting is that there are a number of follow-up checks which can now be done. So the texture hypothesis is actually very testable," said Turok.

Natasha Pinol | EurekAlert!
Further information:
http://www.aaas.org
http://www.sciencemag.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>