Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rocks twirl in remote two-step

18.04.2002


This pair of asteroids is locked in a mutual orbit.
© Nature


One lump of rock is revealed as two in the distant Kuiper belt.

The stand-offish dance of two asteroids at the outer reaches of the Solar System is captivating astronomers. The two rocky objects, discovered locked in mutual orbit, could tell us about the properties of the far-flung Kuiper belt.

Christian Veillet and his team1 studied an object called 1998 WW31 in the Kuiper belt, a sparsely populated region of space beyond the orbit of Neptune. The object was previously thought to be a single rock.



One is in fact two, the team found, using images obtained by the Canada-France-Hawaii Telescope in Hawaii. And the pair follow an unusual elongated, ellipse-shaped orbit which keeps them 20-40,000 km apart. This is considered a very distant partnership for a ’binary object’.

The circling pair, which complete a rotation every 570 days, might offer some vital clues to the composition of rocks in the Kuiper belt. Its extreme distance makes resident objects difficult to study.

If one of the circling bodies eclipses the other, the pair’s size could be estimated and hence their density. Understanding the composition of material in the Kuiper belt - which is thought to contain rubble left over from planet formation - might help to discriminate between different explanations for the formation of the Solar System.

Kuiper-belt binaries are hard to spot, because two small bodies can appear as a single fuzzy blob of reflected sunlight at such long distances. Even if two spots are seen, several images are needed to rule out the possibility that they are two adjacent stars along our line of sight. Veillet and his team carried out such careful analyses before they could confidently claim that 1998 WW31 is indeed a binary.

The elliptical orbit is very different from that of the best known partnership in the Kuiper belt: the outermost planet Pluto and its moon Charon. The binary systems known in the asteroid belt between Mars and Jupiter also stick closer together than 1998 WW31.

The new discovery challenges existing theories of how two asteroid-like bodies can become bound together by their gravitational pull. Researchers are not yet clear why the two rocks have not been ripped apart by interactions with other bodies in the Kuiper belt.

References
  1. Veillet, C. et al The binary Kuiper-belt object 1998 WW31. Nature, 416, 711 - 713, (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

nachricht Taming 'wild' electrons in graphene
23.10.2017 | Rutgers University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>