Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRISM Has Key Role in Selecting Next Mars Rover Landing Site

23.10.2007
Scientists scouting potential landing sites for NASA's next Mars rover mission are using new data from a powerful mineral-mapping camera to narrow the site selection.

When NASA Mars Program officials and members of the Mars science community gather in California next week to pare down the list of candidate landing sites for the 2009 Mars Science Laboratory (MSL), they can refer to 125 new images from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). The images and accompanying analysis products are available on the CRISM Web site at http://crism.jhuapl.edu/msl_landing_sites/.

Built and operated by the Johns Hopkins University Applied Physics Laboratory (APL), CRISM is one of six science instruments on NASA’s Mars Reconnaissance Orbiter, currently circling the planet.

"Since MSL will assess whether Mars ever had an environment capable of supporting life, it will have to land in an area with a mineral record indicative of past water,” says Dr. Scott Murchie, CRISM principal investigator from APL. “CRISM is critical to the selection process because it is the only instrument on MRO with the spectral power to 'see' the chemical makeup of the rocks."

One of CRISM’s main mission objectives is to find and investigate areas that were wet long enough to leave a mineral signature. Offering greater capability to map spectral variations than any similar instrument sent to another planet, CRISM can read 544 "colors" of reflected sunlight to detect minerals in the surface.

The imaging spectrometer is among MRO's cadre of advanced sensors studying Mars in unprecedented detail and contributing to the MSL landing site selection effort. This includes correlating CRISM’s spectral data with high-resolution pictures of boulders, craters, sediment layers and other surface features acquired by the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). "CRISM images provide the scientific criteria that will allow the MSL team to narrow its choices," Murchie says. "By combining data from the MRO instruments, we can create a complete picture of the Martian surface."

The CRISM data release consists of user-friendly, color-coded, thematic images. Different versions of each image show clays, sulfates, and unaltered minerals that help tell the story of past water and volcanic processes on Mars. The set also includes infrared images of surface brightness and enhanced visible-color composites. Each image covers a square area roughly 6 miles (10 kilometers) on a side, with a spatial resolution of approximately 66 feet (20 meters) per pixel.

"The data products that we have generated for all the proposed MSL landing sites are scaled in a similar manner. This should make it easy for scientists and the public alike to distinguish between landing sites that possess a wide range of rock types, from ones that do not," says APL's Dr. Olivier Barnouin-Jha, who with Dr. Frank Seelos (also of APL) assembled the products in this release. "Going to a location with greater rock diversity will ensure that MSL significantly enhances our understanding of the geological history of Mars, including the history of water."

CRISM has mapped more than half the planet in its low-resolution mode since MRO’s two-year science mission began in November 2006, in addition to making more than 2,500 high-resolution observations of the surface and nearly 3,000 atmospheric observations.

APL, which has built more than 150 spacecraft instruments over the past four decades, led the effort to develop, integrate, and test CRISM. The CRISM team includes experts from universities, government agencies and small businesses in the United States and abroad; visit http://crism.jhuapl.edu for more information. Information about the Mars Reconnaissance Orbiter and Mars Science Laboratory missions is available online at http://mars.jpl.nasa.gov/. The Jet Propulsion Laboratory, a division of the California Institute of Technology, manages the MRO mission for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor and built the MRO spacecraft.

Michael Buckley | EurekAlert!
Further information:
http://crism.jhuapl.edu/newscenter/articles/101907.php
http://crism.jhuapl.edu/msl_landing_sites/

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>