Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CRISM Has Key Role in Selecting Next Mars Rover Landing Site

23.10.2007
Scientists scouting potential landing sites for NASA's next Mars rover mission are using new data from a powerful mineral-mapping camera to narrow the site selection.

When NASA Mars Program officials and members of the Mars science community gather in California next week to pare down the list of candidate landing sites for the 2009 Mars Science Laboratory (MSL), they can refer to 125 new images from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). The images and accompanying analysis products are available on the CRISM Web site at http://crism.jhuapl.edu/msl_landing_sites/.

Built and operated by the Johns Hopkins University Applied Physics Laboratory (APL), CRISM is one of six science instruments on NASA’s Mars Reconnaissance Orbiter, currently circling the planet.

"Since MSL will assess whether Mars ever had an environment capable of supporting life, it will have to land in an area with a mineral record indicative of past water,” says Dr. Scott Murchie, CRISM principal investigator from APL. “CRISM is critical to the selection process because it is the only instrument on MRO with the spectral power to 'see' the chemical makeup of the rocks."

One of CRISM’s main mission objectives is to find and investigate areas that were wet long enough to leave a mineral signature. Offering greater capability to map spectral variations than any similar instrument sent to another planet, CRISM can read 544 "colors" of reflected sunlight to detect minerals in the surface.

The imaging spectrometer is among MRO's cadre of advanced sensors studying Mars in unprecedented detail and contributing to the MSL landing site selection effort. This includes correlating CRISM’s spectral data with high-resolution pictures of boulders, craters, sediment layers and other surface features acquired by the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX). "CRISM images provide the scientific criteria that will allow the MSL team to narrow its choices," Murchie says. "By combining data from the MRO instruments, we can create a complete picture of the Martian surface."

The CRISM data release consists of user-friendly, color-coded, thematic images. Different versions of each image show clays, sulfates, and unaltered minerals that help tell the story of past water and volcanic processes on Mars. The set also includes infrared images of surface brightness and enhanced visible-color composites. Each image covers a square area roughly 6 miles (10 kilometers) on a side, with a spatial resolution of approximately 66 feet (20 meters) per pixel.

"The data products that we have generated for all the proposed MSL landing sites are scaled in a similar manner. This should make it easy for scientists and the public alike to distinguish between landing sites that possess a wide range of rock types, from ones that do not," says APL's Dr. Olivier Barnouin-Jha, who with Dr. Frank Seelos (also of APL) assembled the products in this release. "Going to a location with greater rock diversity will ensure that MSL significantly enhances our understanding of the geological history of Mars, including the history of water."

CRISM has mapped more than half the planet in its low-resolution mode since MRO’s two-year science mission began in November 2006, in addition to making more than 2,500 high-resolution observations of the surface and nearly 3,000 atmospheric observations.

APL, which has built more than 150 spacecraft instruments over the past four decades, led the effort to develop, integrate, and test CRISM. The CRISM team includes experts from universities, government agencies and small businesses in the United States and abroad; visit http://crism.jhuapl.edu for more information. Information about the Mars Reconnaissance Orbiter and Mars Science Laboratory missions is available online at http://mars.jpl.nasa.gov/. The Jet Propulsion Laboratory, a division of the California Institute of Technology, manages the MRO mission for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor and built the MRO spacecraft.

Michael Buckley | EurekAlert!
Further information:
http://crism.jhuapl.edu/newscenter/articles/101907.php
http://crism.jhuapl.edu/msl_landing_sites/

More articles from Physics and Astronomy:

nachricht Major discovery in controlling quantum states of single atoms
20.02.2018 | Institute for Basic Science

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>