Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhancement of Polymer luminescence by excitation-energy transfer from Multi-Walled Carbon Nanotubes

19.10.2007
Organic based solution processable devices are promising to revolutionise the lighting and photovoltaic industries of the future. The move away from traditional inorganic materials is driven not only by cost considerations, but also sustainability issues and life-cycle costs. However, current organic device efficiencies and lifetimes are not high enough for many applications.

One solution to improve the lifetime of these devices that has been investigated is incorporating carbon nanotubes (tubes made of carbon atoms, 1000s of times thinner than the width of a human hair) in the polymer to form a composite. These “inorganics-in-organics” hybrid composites add many new dimensions and functionality to traditional organic films. However, the addition of the carbon nanotubes typically comes at a cost. For example, in light emitting materials, the presence of the carbon nanotubes (CNT) reduces the emission from the composite, due to quenching of charge carriers at the nanotubes, which are generally metallic in nature for multi-walled CNT. This quenching reduces the emission efficiency of the devices.

Researchers at the Advanced Technology Institute of the University of Surrey, in collaboration with researchers from China and the USA, have recently demonstrated that this quenching effect is not an unavoidable problem. In fact, they demonstrate a 100-fold increase in the light emission from a nylon polymer sample, by incorporating multi-walled carbon nanotubes (MWCNT). This increase in light-emission only occurred when they acid treated the MWCNT prior to inclusion in the polymer. They propose that this increase is due to a novel energy transfer mechanism, from the acid-damaged surface of the MWCNT to the emitting sites in the polymer (see figure below.) In addition to the enhanced light-emission, the study also demonstrates that the MWCNT produced an improvement in the stability of the polymer to light-induced degradation.

Dr. Simon Henley, one of the lead investigators, comments “These results show that carbon nanotubes have enormous potential as a versatile material in future optoelectronic devices, and raise the prospect of utilising MWCNTs to harvest solar radiation in organic solar cells, in addition to improving device stability. ”

Professor Ravi Silva, Director of the Advanced Technology Institute states: “The mere fact that now we can have a predictable organic-nanotube hybrid composite, with enhanced properties should open the door for many new applications. The enhancement in the luminescence properties bodes well a new generation of organic devices that could potentially reach commercially viable figures of merit for large scale production. We are very excited with these initial results”.

'"The work conducted at the ATI will now allow us to investigate ways to modify the active material used for solar cells in order to harvest more of the solar spectrum using hybrid mixtures.'

This research has just been published in the journal “Small.” DOI: 10.1002/smll.200700278

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>