Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physics research aims to make the first measurements on antimatter

19.10.2007
A Swansea University physicist is leading a project worth more than £835,000, which could change our understanding of the structure of the Universe.

Professor Mike Charlton, who was until the start of October Head of the University’s School of Physical Sciences, has been awarded a five-year Senior Research Fellowship by the Engineering and Physical Sciences Research Council (EPSRC).

The Fellowship will now enable him to dedicate his time entirely to research, and the project’s aim is to make the first measurements of the properties of antimatter.

Antimatter is made up of antiparticles in the same way that normal matter is made up of particles.

Antihydrogen, for instance, is the simplest atom comprised entirely of antiparticles, with an antiproton as a nucleus and a positron in place of the electron normally found in ordinary hydrogen.

Professor Charlton said: “Our current view of how the Universe began involves the Big Bang, which is said to have created equal amounts of matter and antimatter.

“If, as is commonly believed, matter and antimatter cancel each other out, why did all these particles not annihilate each other and leave the Universe devoid of matter?

“By understanding and measuring the properties of antimatter, we hope to draw new conclusions about the very nature of the Universe.”

Although the research project is concerned with the production and trapping of antimatter under laboratory conditions, there is a much larger goal behind the project’s experimental remit.

“Our research, in a very real sense, could change our understanding of how the Universe is made up and perhaps shed new light on how it came into being,” added Professor Charlton.

Professor Charlton was awarded the EPSRC Senior Research Fellowship as a result of the leading role that he and his colleagues at Swansea University have made in the area of antimatter research.

He was part of the ATHENA team that first produced antimatter in the form of antihydrogen, a ground-breaking project that is generally regarded as having started a whole new field in atomic physics.

The antihydrogen project was listed as one of the 15 most significant projects to have been supported by the EPSRC in their first decade.

“The Fellowship allows us to progress to the next stage where we can actually make measurements on the antimatter,” said Professor Charlton, who has been a physicist for around 30 years.

“I am very fortunate to be given this opportunity through the funding to go back to my experimental roots.

“Swansea has unquestionably played a major role in the field of antihydrogen research. The project has already taken 10 years to get to where we are now and there is probably a further 20 years of research ahead. This is a new branch of atomic physics that will continue to be explored for many years to come.”

The EPSRC is the UK Government's leading funding agency for research and training in engineering and the physical sciences, and Professor Charlton has taken up the prestigious award this month.

For more information on the School of Physical Sciences at Swansea University, visit www.swansea.ac.uk/physical_sciences.

Bethan Evans | alfa
Further information:
http://www.swansea.ac.uk
http://www.swansea.ac.uk/physical_sciences

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>