Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Noise put to work


Random vibrations can generate rotation.

This converts noise to one-way spin.

A simple top converts foghorn noise to one-way spin. The device raises the hope that useful energy could be collected from ambient sounds. Normally, random vibrations, which physicists and engineers call noise, produce useless random motion. You can’t move a cart from A to B by shoving it randomly in every direction.

But in the new device, made by Yaroslav Zolotaryuk of the Technical University of Denmark in Lyngby and colleagues, a flat plate encounters more friction when it spins in one direction than in the other, meaning it always rotates predictably1.

The top is surprisingly simple, like something from a child’s construction set. Two horizontal rectangular plates are connected by a set of springs. A vertical rod in the centre of the lower plate passes through the centre of the upper plate, and two springs threaded onto this rod hold the plates apart. Two other springs link the ends of the upper and lower plates. The upper plate is rotated relative to the lower one, giving the entire structure a screw-like twist.

The direction of this twist determines the direction of rotation. When the upper plate is given a series of taps from random directions, the lower plate rotates in a single direction, pulling the rest of the device with it.

The twist doesn’t actually cause this biased rotation. If the springs were replaced with rigid rods, for instance, random taps would produce random rotation in both directions. The bias occurs because there is more friction between the lower plate and the surface on which it sits when the upper plate is pressed down than when it is pressed up. The springs convert this difference into a preference to rotate in just one direction.

On the bias

It has been known for about 90 years that noise can be used to induce directional motion. The trick is, as in the case of this latest device, to set up some kind of bias in one direction.

During the 1990s, physicists began to study ’brownian ratchets’. In these models, random pushes - such as a dust particle receives from colliding air molecules, which normally induce erratic or ’brownian’ motion - propel a particle in a predictable direction.

In a brownian ratchet, bias is introduced by having the particle move over a set of sawtooth ridges, which slope more gently in one direction than in the other.

  1. Norden, B., Zolotaryuk, Y., Christiansen, P.L. & Zolotaryuk, A.V. Ratchet device with broken friction symmetry. Applied Physics Letters, 80, 2601 - 2603, (2002).

PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>