Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noise put to work

17.04.2002


Random vibrations can generate rotation.


This converts noise to one-way spin.
©AIP/Y.Zolotaryuk



A simple top converts foghorn noise to one-way spin. The device raises the hope that useful energy could be collected from ambient sounds. Normally, random vibrations, which physicists and engineers call noise, produce useless random motion. You can’t move a cart from A to B by shoving it randomly in every direction.

But in the new device, made by Yaroslav Zolotaryuk of the Technical University of Denmark in Lyngby and colleagues, a flat plate encounters more friction when it spins in one direction than in the other, meaning it always rotates predictably1.


The top is surprisingly simple, like something from a child’s construction set. Two horizontal rectangular plates are connected by a set of springs. A vertical rod in the centre of the lower plate passes through the centre of the upper plate, and two springs threaded onto this rod hold the plates apart. Two other springs link the ends of the upper and lower plates. The upper plate is rotated relative to the lower one, giving the entire structure a screw-like twist.

The direction of this twist determines the direction of rotation. When the upper plate is given a series of taps from random directions, the lower plate rotates in a single direction, pulling the rest of the device with it.

The twist doesn’t actually cause this biased rotation. If the springs were replaced with rigid rods, for instance, random taps would produce random rotation in both directions. The bias occurs because there is more friction between the lower plate and the surface on which it sits when the upper plate is pressed down than when it is pressed up. The springs convert this difference into a preference to rotate in just one direction.

On the bias

It has been known for about 90 years that noise can be used to induce directional motion. The trick is, as in the case of this latest device, to set up some kind of bias in one direction.

During the 1990s, physicists began to study ’brownian ratchets’. In these models, random pushes - such as a dust particle receives from colliding air molecules, which normally induce erratic or ’brownian’ motion - propel a particle in a predictable direction.

In a brownian ratchet, bias is introduced by having the particle move over a set of sawtooth ridges, which slope more gently in one direction than in the other.

References
  1. Norden, B., Zolotaryuk, Y., Christiansen, P.L. & Zolotaryuk, A.V. Ratchet device with broken friction symmetry. Applied Physics Letters, 80, 2601 - 2603, (2002).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>