Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Electromagnetic Wormhole' Possible with Invisibility Technology

15.10.2007
The team of mathematicians that first created the mathematics behind the "invisibility cloak" announced by physicists last October has now shown that the same technology could be used to generate an "electromagnetic wormhole."

In the study, which is to appear in the Oct. 12 issue of Physical Review Letters, Allan Greenleaf, professor of mathematics at the University of Rochester, and his coauthors lay out a variation on the theme of cloaking. Their results open the possibility of building a sort of invisible tunnel between two points in space.

"Imagine wrapping Harry Potter's invisibility cloak around a tube," says Greenleaf. "If the material is designed according to our specifications, you could pass an object into one end, watch it disappear as it traveled the length of the tunnel, and then see it reappear out the other end."

Current technology can create objects invisible only to microwave radiation, but the mathematical theory allows for the wormhole effect for electromagnetic waves of all frequencies. With this in mind, Greenleaf and his coauthors propose several possible applications. Endoscopic surgeries where the surgeon is guided by MRI imaging are problematical because the intense magnetic fields generated by the MRI scanner affect the surgeon's tools, and the tools can distort the MRI images. Greenleaf says, however, that passing the tools through an EM wormhole could effectively hide them from the fields, allowing only their tips to be "visible" at work.

To create cloaking technology, Greenleaf and his collaborators use theoretical mathematics to design a device to guide the electromagnetic waves in a useful way. Researchers could then use these blueprints to create layers of specially engineered, light-bending, composite materials called metamaterials.

Last year, David R. Smith, professor of electrical and computer engineering at Duke's Pratt School, and his coauthors engineered an invisibility device as a disk, which allowed microwaves to pass around it. Greenleaf and his coauthors have now employed more elaborate geometry to specify exactly what properties are demanded of a wormhole's metamaterial in order to create the "invisible tunnel" effect. They also calculated what additional optical effects would occur if the inside of the wormhole was coated with a variety of hypothetical metamaterials.

Assuming that your vision was limited to the few frequencies at which the wormhole operates, looking in one end, you'd see a distorted view out the other end, according the simulations by Greenleaf and his coauthors. Depending on the length of the tube and how often the light bounced around inside, you might see just a fisheye view out the other end, or you might see an Escher-like jumble.

Greenleaf and his coauthors speculated on one use of the electromagnetic wormhole that sounds like something out of science fiction. If the metamaterials making up the tube were able to bend all wavelengths of visible light, they could be used to make a 3D television display. Imagine thousands of thin wormholes sticking up out of a box like a tuft of long grass in a vase. The wormholes themselves would be invisible, but their ends could transmit light carried up from below. It would be as if thousands of pixels were simply floating in the air.

But that idea, Greenleaf concedes, is a very long way off. Even though the mathematics now says that it's possible, it's up to engineers to apply these results to create a working prototype.

Greenleaf's coauthors are Matti Lassas, professor of mathematics at the Helsinki University of Technology; Yaroslav Kurylev, professor of mathematics at the University College, London; and Gunther Uhlmann, Walker Family Endowed Professor of Mathematics at the University of Washington.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>