Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asteroid is "practice case" for potential hazards

15.10.2007
In research that could aid decisions about future asteroids on a collision course with Earth, MIT researchers have for the first time determined the composition of a near-Earth asteroid that has a very slight possibility of someday hitting our planet.

That information could be useful in planning any future space mission to explore the asteroid, called Apophis. And if the time ever were to come when this object or another turned out to be on its way toward an impact on Earth, knowing what it's made of could be one important factor in deciding what to do about it.

"Basic characterization is the first line of defense," says Richard P. Binzel, Professor of Planetary Sciences in the Department of Earth, Atmospheric, and Planetary Sciences (EAPS). "We've got to know the enemy."

Binzel presented the new findings this week at the annual meeting of the Division for Planetary Sciences of the American Astronomical Society.

Studying the composition of Apophis has been a useful "practice case," Binzel says, because "you never know when the real one will come along" that is on a collision with the Earth. For determining the composition of a threatening asteroid, Binzel says, "We don't know when the real test will come, but we're ready."

On April 13, 2029, Apophis will come relatively close to Earth (it will miss us by about 22,000 miles). But when it comes by again in 2036, there is a very small possibility - about one chance in 45,000 - that it could be on a collision course.

So Binzel, working with EAPS graduate students Cristina Thomas and Francesca DeMeo and others, has been using telescopes on Earth to find out as much as possible about the nature of Apophis and other asteroids. Short of putting together a space mission that would take years and cost hundreds of millions of dollars, such observations are the best way to find out as much as possible about any space rock that might someday be coming our way, Binzel says.

Using the MIT Magellan telescope in Chile and NASA's Infrared Telescope Facility in Hawaii, they have now been able to figure out exactly what Apophis is made of. "The composition, I think, is really nailed," he says.

The key to understanding the mineral makeup of an asteroid is to compare it with samples of asteroidal material that have been delivered, free of charge, to the Earth, in the form of the many thousands of meteorites that have been collected over the years.

Spectral analysis - measuring how the meteorites reflect light of different wavelengths - can be used to determine their exact mineral constituents. Similarly, a spectral analysis of the light reflected from a distant asteroid shows the same telltale lines that reveal its composition. By comparing the two kinds of spectra, an asteroid that is just a faraway pinprick of light can be correlated with a piece of a space rock in the laboratory.

Binzel and his students were able to use both visible-light and infrared spectroscopy to show that Apophis is "a good match" for a rare type of meteorite, known as a type LL chondrite. These represent just 7 percent of the known meteorite falls on Earth, and are rich in the minerals pyroxene and olivine, which are also common on Earth.

"The beauty of having found a meteorite match for Apophis is that because we have laboratory measurements for the density and strength of these meteorites, we can infer many of the same properties for the asteroid Apophis itself," Binzel says.

An object the size of Apophis (about 270 meters across) could devastate a region as large as France, or produce tsunamis over a wide area if it struck at sea. Many ideas have been proposed for how to deal with such a threat, ranging from using bombs, lasers or spacecraft to nudge it out of the way to blowing it to pieces while it is still far away. The selection of the best course of action may depend of the physical characteristics of the object, including its mineral composition.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>