Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wanted: the right wall material for ITER

12.10.2007
ASDEX Upgrade at Max Planck Institute of Plasma Physics (IPP) in Garching, Germany, recently became the world's first and only device allowing experiments with a wall completely clad with metal, viz. tungsten. The results are highly promising: Tungsten as wall material could also afford an attractive solution for the ITER international fusion experiment.

The objective of IPP is to develop a power plant that, like the sun, derives energy from fusion of atomic nuclei. Its feasibility is to be demonstrated by the ITER (Latin for "the way") international experimental reactor with a fusion power of 500 megawatts. Construction will start next year at Cadarache in France. The aim here is to confine the fuel – an ionised low-density hydrogen gas, a "plasma" – in a magnetic field cage without letting it touch the wall and then heat it to ignition temperatures of over 100 million degrees. One of the major challenges involved is to achieve tolerable interaction between the hot plasma and the wall of the enclosing vessel.

The problem
The problem here is that high-energy plasma particles can dislodge atoms from the wall, which then penetrate the plasma and contaminate it. Unlike the light hydrogen, the heavy atoms from the wall are not completely ionised, even at the high fusion temperatures needed. The more electrons that are still bound to the atomic nuclei, the more energy they extract from plasma, emitting it then as ultraviolet or X-ray light. In this way they cool the plasma and rarefy it, thus reducing the fusion yield. Whereas light impurities in concentrations of a few per cent are still tolerable, the limit for heavy impurities such as iron or chromium are much lower. Present-day devices therefore all use light materials for the wall, such as beryllium or carbon. These two are also envisaged for the wall of the ITER test reactor.

For ITER, however, beryllium and carbon are no longer without problems: Sputtering of these when bombarded with hydrogen is relatively high. The high hydrogen fluxes from the large ITER plasma would therefore cause severe material erosion. Furthermore, hydrogen particles readily accumulate in carbon, and in ITER so also does its radioactive version, tritium, this being highly undesirable for safety reasons. A wall completely clad with tungsten would obviate these problems with light elements: Tungsten affords advantageous thermal properties, low sputtering caused by hydrogen, and no long-term accumulation of tritium. This leaves the critical question how many of the heavy tungsten particles can penetrate to the core of the plasma. Recent estimates for ITER indicate that it may not be more than a few hundred thousandths.

Tungsten experiments at IPP
The pioneer in testing tungsten as wall material is the ASDEX Upgrade experiment at Garching.

Despite bad experience in other laboratories, IPP started in 1996 to apply tungsten to special areas of the wall otherwise completely clad with carbon tiles. This relied on the differently chosen, ITER-like, i.e. cold plasma edge of ASDEX Upgrade. The positive result prompted a further reduction of carbon. The aim was to check how this affected the plasma and its interaction with the tungsten components. In order not to jeopardise other research objectives, the tungsten surface was only successively enlarged. Reliably determining the particular tungsten concentration amassing in the plasma is not a simple matter, the less so when the emission losses are attributable not only to a single impurity. Once the necessary measuring methods were developed it was found, however, that even an extensive tungsten surface does not unduly affect the plasma of ASDEX Upgrade.

It remains to prove that even complete metal cladding of the vessel is compatible with the favourable plasma states wanted for ITER – such as the high-confinement regime developed at IPP. After the last carbon tiles had been replaced and all surfaces carefully cleaned, experiments were recently resumed with a purely tungsten wall. To ensure clean experimental conditions no resort was made to the otherwise standard pretreatment of the vessel with boron. In order to reduce losses due to impurity radiation, this process serves to coat the wall surfaces with a thin layer of boron by means of a glow discharge in a boron hydrogen gas. However, in ITER or a subsequent power plant this will no longer be possible.

ASDEX Upgrade has therefore also started without boronisation – and was successful: The tungsten concentration is below the critical threshhold and the desired favourable plasma states can be achieved with only slight loss of quality. Further investigation will aim at exactly checking the tungsten compatibility in ITER-relevant plasma states. The decisive issue will be whether permanently "good" high-confinement plasmas can be achieved without boronisation. For this work IPP has about two years – before the decision on the interior wall of ITER is taken.

Isabella Milch | alfa
Further information:
http://www.ipp.mpg.de/eng/index.html

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>