Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wanted: the right wall material for ITER

12.10.2007
ASDEX Upgrade at Max Planck Institute of Plasma Physics (IPP) in Garching, Germany, recently became the world's first and only device allowing experiments with a wall completely clad with metal, viz. tungsten. The results are highly promising: Tungsten as wall material could also afford an attractive solution for the ITER international fusion experiment.

The objective of IPP is to develop a power plant that, like the sun, derives energy from fusion of atomic nuclei. Its feasibility is to be demonstrated by the ITER (Latin for "the way") international experimental reactor with a fusion power of 500 megawatts. Construction will start next year at Cadarache in France. The aim here is to confine the fuel – an ionised low-density hydrogen gas, a "plasma" – in a magnetic field cage without letting it touch the wall and then heat it to ignition temperatures of over 100 million degrees. One of the major challenges involved is to achieve tolerable interaction between the hot plasma and the wall of the enclosing vessel.

The problem
The problem here is that high-energy plasma particles can dislodge atoms from the wall, which then penetrate the plasma and contaminate it. Unlike the light hydrogen, the heavy atoms from the wall are not completely ionised, even at the high fusion temperatures needed. The more electrons that are still bound to the atomic nuclei, the more energy they extract from plasma, emitting it then as ultraviolet or X-ray light. In this way they cool the plasma and rarefy it, thus reducing the fusion yield. Whereas light impurities in concentrations of a few per cent are still tolerable, the limit for heavy impurities such as iron or chromium are much lower. Present-day devices therefore all use light materials for the wall, such as beryllium or carbon. These two are also envisaged for the wall of the ITER test reactor.

For ITER, however, beryllium and carbon are no longer without problems: Sputtering of these when bombarded with hydrogen is relatively high. The high hydrogen fluxes from the large ITER plasma would therefore cause severe material erosion. Furthermore, hydrogen particles readily accumulate in carbon, and in ITER so also does its radioactive version, tritium, this being highly undesirable for safety reasons. A wall completely clad with tungsten would obviate these problems with light elements: Tungsten affords advantageous thermal properties, low sputtering caused by hydrogen, and no long-term accumulation of tritium. This leaves the critical question how many of the heavy tungsten particles can penetrate to the core of the plasma. Recent estimates for ITER indicate that it may not be more than a few hundred thousandths.

Tungsten experiments at IPP
The pioneer in testing tungsten as wall material is the ASDEX Upgrade experiment at Garching.

Despite bad experience in other laboratories, IPP started in 1996 to apply tungsten to special areas of the wall otherwise completely clad with carbon tiles. This relied on the differently chosen, ITER-like, i.e. cold plasma edge of ASDEX Upgrade. The positive result prompted a further reduction of carbon. The aim was to check how this affected the plasma and its interaction with the tungsten components. In order not to jeopardise other research objectives, the tungsten surface was only successively enlarged. Reliably determining the particular tungsten concentration amassing in the plasma is not a simple matter, the less so when the emission losses are attributable not only to a single impurity. Once the necessary measuring methods were developed it was found, however, that even an extensive tungsten surface does not unduly affect the plasma of ASDEX Upgrade.

It remains to prove that even complete metal cladding of the vessel is compatible with the favourable plasma states wanted for ITER – such as the high-confinement regime developed at IPP. After the last carbon tiles had been replaced and all surfaces carefully cleaned, experiments were recently resumed with a purely tungsten wall. To ensure clean experimental conditions no resort was made to the otherwise standard pretreatment of the vessel with boron. In order to reduce losses due to impurity radiation, this process serves to coat the wall surfaces with a thin layer of boron by means of a glow discharge in a boron hydrogen gas. However, in ITER or a subsequent power plant this will no longer be possible.

ASDEX Upgrade has therefore also started without boronisation – and was successful: The tungsten concentration is below the critical threshhold and the desired favourable plasma states can be achieved with only slight loss of quality. Further investigation will aim at exactly checking the tungsten compatibility in ITER-relevant plasma states. The decisive issue will be whether permanently "good" high-confinement plasmas can be achieved without boronisation. For this work IPP has about two years – before the decision on the interior wall of ITER is taken.

Isabella Milch | alfa
Further information:
http://www.ipp.mpg.de/eng/index.html

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>