Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making tracks towards understanding exploding stars and the origin of the elements

11.10.2007
Scientists and technicians at the University of York have helped to design and create a pioneering instrument that will provide clues that could help to understand the origins of the elements in the Universe.

The novel instrument, which will improve our understanding of some of the most spectacular explosions in space, has taken its first data at TRIUMF, Canada’s subatomic research facility.

The TACTIC detector is an active gas target time-projection chamber. It is similar to some of the large detectors used at CERN (the European Organisation for Nuclear Research) the world’s largest particle physics laboratory near Geneva.

But TACTIC is designed specially to study the much lower energy nuclear reactions that occur in supernovae and X-ray bursts, and this means that the detector is substantially smaller than its counterparts at CERN.

TACTIC was designed jointly by researchers at the University of York, led by Dr. Alison Laird, and at TRIUMF, led by Dr Lothar Buchmann, with technical support from Science and Technology Facilities Council (STFC) Daresbury Laboratory. The detector was constructed over 10 months in the University of York’s Department of Physics, by PhD student, Paul Mumby-Croft, working with the department’s specialist workshop team.

After assembly and initial testing at York, TACTIC was shipped to TRIUMF in British Columbia, where initial online data visualisation showed the tracks of boron and nitrogen nuclei being scattered through the device. TACTIC allows scientists to follow these atoms one at a time as they interact in the gas, leaving a trail behind them. Studying how such light atoms behave helps them to understand how elements are created in stars.

Dr Laird said: “TACTIC surpassed almost all performance expectations and the data collected has proved to be a goldmine of information. It will take us some time to extract all the information it contains. But once this analysis is complete, the performance of TACTIC will be optimised to study specific nuclear astrophysics reactions with radioactive beams at TRIUMF and other laboratories around the world.

“The initial tests have proved extremely exciting and the Nuclear Astrophysics group at the University of York and TRIUMF are enthusiastic about the many years of work ahead with this impressive new detector.”

Funding for the initial UK development was provided by the Royal Society, Engineering and Physical Sciences Research Council (EPSRC) and the University of York. A Science and Technology Facilities Council project grant will be submitted to enable the York Nuclear Astrophysics group to use TACTIC in a range of laboratories worldwide.

David Garner | alfa
Further information:
http://www.york.ac.uk/admin/presspr/pressreleases/tactic.htm
http://www.york.ac.uk/depts/phys/

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>