Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar X-Ray Telescope Passes First Hurdle

09.10.2007
Scientists from the University of Leicester have taken an important first step in developing an innovative telescope which could one day be deployed on the Moon.

The telescope is called MagEX, which stands for "Magnetosheath Explorer in X-rays" and is an international collaboration between scientists from the United States, the Czech Republic, and the University of Leicester.

MagEX will study the magnetosheath, the magnetic "shield" that protects the Earth from the solar wind - the high energy particles that continuously flow out from the Sun. Without this shield, life on Earth as we know it could not exist.

MagEX was submitted to NASA for consideration in their Lunar Sortie Science Opportunites (LSSO) programme and has cleared the first selection hurdle; it will now receive NASA funding for a technical feasibility study.

The LSSO program is part of NASA's New Vision for Space Exploration Program announced by President Bush in 2004. The President committed NASA to return men to the Moon for the purpose of scientfic exploration. This new generation of NASA astronauts will set-up scientific experiments on the lunar surface, just like their Apollo colleagues did over four decades before them. MagEX could be one of those experiments.

The MagEX telescope will be quite compact, being less than one metre tall.
It is designed to be placed on the lunar surface, facing back towards the Earth. The Moon is the ideal location for measuring the X-ray emission of the magnetosheath.

Looking from the Moon, the Earth's magnetosheath covers an area about 30 degrees across on the sky. The magnetosheath glows as solar wind particles strike gas trapped within the region, however, the glow is not in visible light but in X-rays. Invisible to the human eye, X-rays require specialised instruments to detect them. X-rays are produced by many astrophysical phenomenona such as black holes, quasars, stars and galaxies.

The lead Leicester scientist on MagEX, Dr Steven Sembay, said : "MagEX will be unique in that it will be able to view our Earth's entire magnetosheath for the first time. The magnetosheath is not static, but contracts and expands quite dramatically as the solar wind pressure changes during solar storms. The view from the moon should be quite spectacular"

NASA's manned return to the Moon is still some way-off. It will probably be the end of the next decade at least before an astronaut steps foot on the lunar surface again. Dr Steven Sembay said, "Like all space projects, we are in for the long haul. But every long journey starts with a first step."

The Department of Physics at the University of Leicester has a 40 year history of designing X-ray detectors for space science exploration. These currently include instruments onboard ESA's XMM-Newton observatory, NASA's gamma-ray burst mission, Swift, and in the future, on ESA's BepiColombo mission to explore Mercury.

Ather Mirza | alfa
Further information:
http://www.src.le.ac.uk/projects/magex

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>