Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar X-Ray Telescope Passes First Hurdle

09.10.2007
Scientists from the University of Leicester have taken an important first step in developing an innovative telescope which could one day be deployed on the Moon.

The telescope is called MagEX, which stands for "Magnetosheath Explorer in X-rays" and is an international collaboration between scientists from the United States, the Czech Republic, and the University of Leicester.

MagEX will study the magnetosheath, the magnetic "shield" that protects the Earth from the solar wind - the high energy particles that continuously flow out from the Sun. Without this shield, life on Earth as we know it could not exist.

MagEX was submitted to NASA for consideration in their Lunar Sortie Science Opportunites (LSSO) programme and has cleared the first selection hurdle; it will now receive NASA funding for a technical feasibility study.

The LSSO program is part of NASA's New Vision for Space Exploration Program announced by President Bush in 2004. The President committed NASA to return men to the Moon for the purpose of scientfic exploration. This new generation of NASA astronauts will set-up scientific experiments on the lunar surface, just like their Apollo colleagues did over four decades before them. MagEX could be one of those experiments.

The MagEX telescope will be quite compact, being less than one metre tall.
It is designed to be placed on the lunar surface, facing back towards the Earth. The Moon is the ideal location for measuring the X-ray emission of the magnetosheath.

Looking from the Moon, the Earth's magnetosheath covers an area about 30 degrees across on the sky. The magnetosheath glows as solar wind particles strike gas trapped within the region, however, the glow is not in visible light but in X-rays. Invisible to the human eye, X-rays require specialised instruments to detect them. X-rays are produced by many astrophysical phenomenona such as black holes, quasars, stars and galaxies.

The lead Leicester scientist on MagEX, Dr Steven Sembay, said : "MagEX will be unique in that it will be able to view our Earth's entire magnetosheath for the first time. The magnetosheath is not static, but contracts and expands quite dramatically as the solar wind pressure changes during solar storms. The view from the moon should be quite spectacular"

NASA's manned return to the Moon is still some way-off. It will probably be the end of the next decade at least before an astronaut steps foot on the lunar surface again. Dr Steven Sembay said, "Like all space projects, we are in for the long haul. But every long journey starts with a first step."

The Department of Physics at the University of Leicester has a 40 year history of designing X-ray detectors for space science exploration. These currently include instruments onboard ESA's XMM-Newton observatory, NASA's gamma-ray burst mission, Swift, and in the future, on ESA's BepiColombo mission to explore Mercury.

Ather Mirza | alfa
Further information:
http://www.src.le.ac.uk/projects/magex

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>