Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lunar X-Ray Telescope Passes First Hurdle

09.10.2007
Scientists from the University of Leicester have taken an important first step in developing an innovative telescope which could one day be deployed on the Moon.

The telescope is called MagEX, which stands for "Magnetosheath Explorer in X-rays" and is an international collaboration between scientists from the United States, the Czech Republic, and the University of Leicester.

MagEX will study the magnetosheath, the magnetic "shield" that protects the Earth from the solar wind - the high energy particles that continuously flow out from the Sun. Without this shield, life on Earth as we know it could not exist.

MagEX was submitted to NASA for consideration in their Lunar Sortie Science Opportunites (LSSO) programme and has cleared the first selection hurdle; it will now receive NASA funding for a technical feasibility study.

The LSSO program is part of NASA's New Vision for Space Exploration Program announced by President Bush in 2004. The President committed NASA to return men to the Moon for the purpose of scientfic exploration. This new generation of NASA astronauts will set-up scientific experiments on the lunar surface, just like their Apollo colleagues did over four decades before them. MagEX could be one of those experiments.

The MagEX telescope will be quite compact, being less than one metre tall.
It is designed to be placed on the lunar surface, facing back towards the Earth. The Moon is the ideal location for measuring the X-ray emission of the magnetosheath.

Looking from the Moon, the Earth's magnetosheath covers an area about 30 degrees across on the sky. The magnetosheath glows as solar wind particles strike gas trapped within the region, however, the glow is not in visible light but in X-rays. Invisible to the human eye, X-rays require specialised instruments to detect them. X-rays are produced by many astrophysical phenomenona such as black holes, quasars, stars and galaxies.

The lead Leicester scientist on MagEX, Dr Steven Sembay, said : "MagEX will be unique in that it will be able to view our Earth's entire magnetosheath for the first time. The magnetosheath is not static, but contracts and expands quite dramatically as the solar wind pressure changes during solar storms. The view from the moon should be quite spectacular"

NASA's manned return to the Moon is still some way-off. It will probably be the end of the next decade at least before an astronaut steps foot on the lunar surface again. Dr Steven Sembay said, "Like all space projects, we are in for the long haul. But every long journey starts with a first step."

The Department of Physics at the University of Leicester has a 40 year history of designing X-ray detectors for space science exploration. These currently include instruments onboard ESA's XMM-Newton observatory, NASA's gamma-ray burst mission, Swift, and in the future, on ESA's BepiColombo mission to explore Mercury.

Ather Mirza | alfa
Further information:
http://www.src.le.ac.uk/projects/magex

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>