Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematicians defy gravity

05.10.2007
Droplets of liquid have been shown to travel uphill, rather than sliding down as expected, when the surface they are on is vigorously shaken up and down.

We are all familiar with raindrops on our wind screens. The small ones stay in place while the big ones roll down the window. This is because surface tension holds the small drops onto the screen until they get to a size where the force of gravity is greater than the surface tension.

But mathematicians at the University of Bristol have shown that the small drops can defy gravity and travel up hill – even on an incline as steep as 85 degrees – if the surface vibrates up and down sufficiently strongly.

Dr Philippe Brunet, in the Department of Mathematics said, “Moving small droplets – such as thousands of spots of DNA arranged on a solid surface (a DNA microarray) – is very difficult as their small size causes them to stick to the surface. So improving our understanding of what causes droplets to move on surfaces will help with this and similar problems.”

Professor Jens Eggers, also from the University’s Maths Department added: “As the shaking plate rises the drop is compressed, while it bulges upward as the plate falls. If the shaking is vigorous enough to overcome the surface tension experienced as the drop is compressed, the drop will tend to lean forward, producing a net force which drives the drop uphill.”

The research will be published online this week in Physical Review Letters.

Since the droplet must withstand a fair amount of force, alternately pushing and pulling, it is in danger of breaking apart. Thus the droplet cannot be too large and the fluid has to be a bit thicker than water. Pure water droplets will break apart before the forces are strong enough to cause them to climb. On the other hand, the drops move very slowly if the fluid is too thick.

This method for moving droplets using vibrations may prove useful in understanding the small-scale manipulation of fluids.

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>