Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titan's icy climate mimics Earth's tropics

05.10.2007
If space travelers ever visit Saturn's largest moon, they will find a tropical world where temperatures plunge to minus 274 degrees Fahrenheit, methane rains from the sky and dunes of ice or tar cover the planet's most arid regions. These conditions reflect a cold mirror image of Earth's tropical climate, according to scientists at the University of Chicago.

"You have all these things that are analogous to Earth. At the same time, it's foreign and unfamiliar," said Ray Pierrehumbert, the Louis Block Professor in Geophysical Sciences at Chicago.

Titan, one of Saturn's 60 moons, is the only moon in the solar system large enough to support an atmosphere. Pierrehumbert and Jonathan Mitchell, who recently completed his Ph.D. in Astronomy & Astrophysics at Chicago, have been comparing observations of Titan collected by the Cassini space probe and the Hubble Space Telescope with their own computer simulations of the moon's atmosphere.

Their study of the dynamics behind Titan's methane clouds have appeared in the Proceedings of the National Academy of Sciences. Their continuing research on Titan's climate focuses on the moon's deserts.

"One of the things that attracts me about Titan is that it has a lot of the same circulation features as Earth, but done with completely different substances that work at different temperatures," Pierrehumbert said. On Earth, for example, water forms liquid and is relatively active as a vapor in the atmosphere. But on Titan, water is a rock.

"It's not more volatile on Titan than sand is on Earth."

Methane-natural gas-assumes an Earthlike role of water on Titan. It exists in enough abundance to condense into rain and form puddles on the surface within the range of temperatures that occur on Titan.

"The ironic thing on Titan is that although it's much colder than Earth, it actually acts like a super-hot Earth rather than a snowball Earth, because at Titan temperatures, methane is more volatile than water vapor is at Earth temperatures," Pierrehumbert said.

Pierrehumbert and Mitchell even go so far as to call Titan's climate tropical, even though it sounds odd for a moon that orbits Saturn more than nine times farther from the sun than Earth. Along with the behavior of methane, Titan's slow rotation rate also contributes to its tropical nature. Earth's tropical weather systems extend only to plus or minus 30 degrees of latitude from the equator. But on Titan, which rotates only once every 16 days, "the tropical weather system extends to the entire planet," Pierrehumbert said.

Titan's tropical nature means that scientists can observe the behavior of its clouds using theories they've relied upon to understand Earth's tropics, Mitchell noted.Titan's atmosphere produces an updraft where surface winds converge. This updraft lifts evaporated methane up to cooler temperatures and lower pressures, where much of it condenses and forms clouds.

"This is a well-known feature on Earth called an ITCZ, the inter-tropical convergence zone," Mitchell said. Earth's oceans help confine the ITCZ to the lowest latitudes. But in some scenarios for oceanless Titan, the ITCZ in Mitchell's computer simulations wanders in latitude almost from one pole to the other. Titan's clouds should also follow the ITCZ.

Titan's orange atmospheric haze complicates efforts to observe the moon's clouds. "This haze shrouds the entire surface," Mitchell said. "It pretty much blocks all visible light from reaching us from the surface or from the lower atmosphere."

Nevertheless, infrared observations via two narrow frequency bands have recently revealed that clouds are currently confined to the moon's southern hemisphere, which is just now emerging from its summer season.

"There should be a very large seasonality in these cloud features," Mitchell said. "Cassini and other instruments might be able to tell us about that in the next seven to 10 years or so, as the seasons progress."

Mitchell and Pierrehumbert's next paper will describe how oscillations in Titan's atmospheric circulation dry out the moon's midsection. Over the course of a year, Mitchell explained, "this oscillation in the atmosphere tends to transport moisture, or evaporated methane, out of the low latitudes and then deposit it at mid and high latitude in the form of rainfall. This is interesting, because recent Cassini observations of the surface suggest that the low latitudes are very dry."

Cassini images show dunes of ice or tar covering these low-latitude regions that correspond to the tropics on Earth. When ultraviolet light from the sun interacts with methane high in Titan's atmosphere, it creates byproducts such as ethane and hydrogen.

These byproducts become linked to chains of hydrocarbon molecules that create Titan's orange haze. When these molecules coalesce into large particles, they settle out as a tar-like rain.

"Titan is like a big petrochemical plant," Pierrehumbert said. "Although this is all happening at a much lower temperature than in a petroleum refinery, the basic processes going on there are very closely allied to what people do when they make fuel."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>