Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titan's icy climate mimics Earth's tropics

05.10.2007
If space travelers ever visit Saturn's largest moon, they will find a tropical world where temperatures plunge to minus 274 degrees Fahrenheit, methane rains from the sky and dunes of ice or tar cover the planet's most arid regions. These conditions reflect a cold mirror image of Earth's tropical climate, according to scientists at the University of Chicago.

"You have all these things that are analogous to Earth. At the same time, it's foreign and unfamiliar," said Ray Pierrehumbert, the Louis Block Professor in Geophysical Sciences at Chicago.

Titan, one of Saturn's 60 moons, is the only moon in the solar system large enough to support an atmosphere. Pierrehumbert and Jonathan Mitchell, who recently completed his Ph.D. in Astronomy & Astrophysics at Chicago, have been comparing observations of Titan collected by the Cassini space probe and the Hubble Space Telescope with their own computer simulations of the moon's atmosphere.

Their study of the dynamics behind Titan's methane clouds have appeared in the Proceedings of the National Academy of Sciences. Their continuing research on Titan's climate focuses on the moon's deserts.

"One of the things that attracts me about Titan is that it has a lot of the same circulation features as Earth, but done with completely different substances that work at different temperatures," Pierrehumbert said. On Earth, for example, water forms liquid and is relatively active as a vapor in the atmosphere. But on Titan, water is a rock.

"It's not more volatile on Titan than sand is on Earth."

Methane-natural gas-assumes an Earthlike role of water on Titan. It exists in enough abundance to condense into rain and form puddles on the surface within the range of temperatures that occur on Titan.

"The ironic thing on Titan is that although it's much colder than Earth, it actually acts like a super-hot Earth rather than a snowball Earth, because at Titan temperatures, methane is more volatile than water vapor is at Earth temperatures," Pierrehumbert said.

Pierrehumbert and Mitchell even go so far as to call Titan's climate tropical, even though it sounds odd for a moon that orbits Saturn more than nine times farther from the sun than Earth. Along with the behavior of methane, Titan's slow rotation rate also contributes to its tropical nature. Earth's tropical weather systems extend only to plus or minus 30 degrees of latitude from the equator. But on Titan, which rotates only once every 16 days, "the tropical weather system extends to the entire planet," Pierrehumbert said.

Titan's tropical nature means that scientists can observe the behavior of its clouds using theories they've relied upon to understand Earth's tropics, Mitchell noted.Titan's atmosphere produces an updraft where surface winds converge. This updraft lifts evaporated methane up to cooler temperatures and lower pressures, where much of it condenses and forms clouds.

"This is a well-known feature on Earth called an ITCZ, the inter-tropical convergence zone," Mitchell said. Earth's oceans help confine the ITCZ to the lowest latitudes. But in some scenarios for oceanless Titan, the ITCZ in Mitchell's computer simulations wanders in latitude almost from one pole to the other. Titan's clouds should also follow the ITCZ.

Titan's orange atmospheric haze complicates efforts to observe the moon's clouds. "This haze shrouds the entire surface," Mitchell said. "It pretty much blocks all visible light from reaching us from the surface or from the lower atmosphere."

Nevertheless, infrared observations via two narrow frequency bands have recently revealed that clouds are currently confined to the moon's southern hemisphere, which is just now emerging from its summer season.

"There should be a very large seasonality in these cloud features," Mitchell said. "Cassini and other instruments might be able to tell us about that in the next seven to 10 years or so, as the seasons progress."

Mitchell and Pierrehumbert's next paper will describe how oscillations in Titan's atmospheric circulation dry out the moon's midsection. Over the course of a year, Mitchell explained, "this oscillation in the atmosphere tends to transport moisture, or evaporated methane, out of the low latitudes and then deposit it at mid and high latitude in the form of rainfall. This is interesting, because recent Cassini observations of the surface suggest that the low latitudes are very dry."

Cassini images show dunes of ice or tar covering these low-latitude regions that correspond to the tropics on Earth. When ultraviolet light from the sun interacts with methane high in Titan's atmosphere, it creates byproducts such as ethane and hydrogen.

These byproducts become linked to chains of hydrocarbon molecules that create Titan's orange haze. When these molecules coalesce into large particles, they settle out as a tar-like rain.

"Titan is like a big petrochemical plant," Pierrehumbert said. "Although this is all happening at a much lower temperature than in a petroleum refinery, the basic processes going on there are very closely allied to what people do when they make fuel."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>