Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NRL Instrument on NASA Satellite Sees Solar Hurricane Detach Comet Tail

05.10.2007
Scientists at the Naval Research Laboratory report they have captured the first images of a collision between a comet and a solar hurricane. It is the first time scientists have witnessed such an event on another cosmic body. One of NASA's pair of Solar Terrestrial Relations Observatory satellites, known as STEREO, recorded the event on April 20, 2007.

The phenomenon was caused by a coronal mass ejection, a large cloud of magnetized gas cast into space by the sun. The collision resulted in the complete detachment of the plasma tail of Encke's comet. Observations of the comet reveal the brightening of its tail as the coronal mass ejection swept by and the tail's subsequent separation as it was carried away by the front of the ejection. The researchers combined the images into a movie.

"We were awestruck when we saw these images," says Angelos Vourlidas, lead author and researcher at NRL. "This is the first time we've witnessed a collision between a CME and a comet and the surprise of seeing the disconnection of the tail was the icing on the cake"

Encke's comet was traveling within the orbit of Mercury when a coronal mass ejection first crunched the tail then ripped it completely away. The comet is only the second repeating, or periodic, comet ever identified. Halley's comet was the first.

Scientists at NRL made the observations using the Heliospheric Imager in its Sun Earth Connection Coronal and Heliospheric Investigation telescope suite aboard the STEREO-A spacecraft. The results will be published in the October 10 print issue of the Astrophysical Journal Letters (ApJL) but are online now at the ApJL website (http://www.journals.uchicago.edu/ApJ/journal/contents/ApJL/v668n1.html).

Coronal mass ejections are violent eruptions with masses greater than a few billion tons. They travel from 60 to more than 2,000 miles per second. They have been compared to hurricanes because of the widespread disruption they can cause when directed at Earth. These solar hurricanes cause geomagnetic storms that can present hazards for satellites, radio communications and power systems. However, coronal mass ejections are spread over a large volume of space, mitigating their mass and power to create an impact softer than a baby's breath.

Scientists have been aware of the disconnection of the entire plasma tail of a comet for some time, but the conditions that lead to these events remained a mystery. It was suspected that coronal mass ejections could be responsible for some of the disconnected events, but the interaction between a coronal mass ejection and a comet never had been observed.

Preliminary analysis suggests the disconnection likely is triggered by what is known as magnetic reconnection, in which the oppositely directed magnetic fields around the comet are crunched together by the magnetic fields in the coronal mass ejection. The comet fields suddenly link together, reconnecting, to release a burst of energy that detaches the comet's tail. A similar process takes place in Earth's magnetosphere during geomagnetic storms, powering the aurora borealis and other phenomena.

Comets are icy leftovers from the solar system's formation billions of years ago. They usually reside in the cold, distant regions of the solar system. Occasionally, the gravitational tug from a planet, another comet or a nearby star sends a comet into the inner solar system, where the sun's heat and radiation vaporizes gas and dust from the comet to form its tail. Comets typically have two tails: one of dust and a fainter one of electrically conducting gas called plasma.

"Even though STEREO is primarily designed to study coronal mass ejections, particularly their impact on Earth, we hope this impact will provide many insights to scientists studying comets," said Michael Kaiser, STEREO project scientist at NASA's Goddard Space Flight Center, Greenbelt, Md.

STEREO is the third mission in NASA's Solar Terrestrial Probes program, sponsored by NASA's Science Mission Directorate, Washington. Goddard manages the mission, instruments, and science center. The Heliospheric Imager was built in the United Kingdom by Rutheford Appleton Laboratory and the University of Birmingham with major contributions from NRL and the Centre Spatial de Liege, Belgium. Other international partners in the STEREO mission include the European Space Agency and France, Germany, Hungary and Switzerland.

Donna McKinney | EurekAlert!
Further information:
http://www.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>