Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling the structure of microcrystals

04.10.2007
Microcrystals take the form of tiny grains, so small that they resemble a powder. How can we determine their structure? Until today, the technique of X-ray diffraction, normally used to study crystals, was not an appropriate solution.

For the first time, researchers from the ESRF and the CNRS have used X-ray diffraction to determine the structure of microcrystal grains of only one cubic micrometre in size. They gained a factor of a thousand on the size of the analysable samples thanks to new equipment created at the ESRF. This breakthrough opens up new possibilities of research to chemists, physicists and biologists.

The properties of a crystal are determined by the arrangement of its atom in space, its crystalline structure. Scientists use X-ray or neutron diffraction to study crystalline structure when the size of the crystal is more than 10 cubic micrometres. Below this limit, the solid material is considered a powder. Scientists can apply powder diffraction to analyse such a material but this technique is not easy to exploit. Moreover, powder diffraction can only be used for materials with grain sizes of less than three millionths of a cubic micrometre. Due to these limitations, a determination of the structure of new synthetic solids in powder form is not always possible because the crystals are too small.

The teams from the ESRF and the Institute Lavoisier (CNRS/Université de Versailles Saint-Quentin) have used new set-up permitting X-ray diffraction on crystals of a size of one cubic micrometre, a volume a thousand times smaller than that ever attainable before. This new set-up consists of a focussing system for the ESRF beam, coupled with a goniometer, an instrument to position the sample with maximum precision.

The researchers studied the structure of an organic-inorganic hybrid compound (a microporous aluminium carboxylate), which could be used for gas absorption or to encapsulate various organic molecules. This study confirms that the new set-up allows pushing back the limits in crystal dimension accessible to X-ray diffraction. “It is a revolution: what was considered a powder in the past has become a crystal today. Researchers can now bring forward samples left in their cupboards because the sizes had previously prevented their study. Now they will be able to elucidate the structures of these samples, with potentially great scientific advances on the horizon”, explains Thierry Loiseau, from the Institut Lavoisier.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/pressreleases/microcrystals/

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>