Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling the structure of microcrystals

04.10.2007
Microcrystals take the form of tiny grains, so small that they resemble a powder. How can we determine their structure? Until today, the technique of X-ray diffraction, normally used to study crystals, was not an appropriate solution.

For the first time, researchers from the ESRF and the CNRS have used X-ray diffraction to determine the structure of microcrystal grains of only one cubic micrometre in size. They gained a factor of a thousand on the size of the analysable samples thanks to new equipment created at the ESRF. This breakthrough opens up new possibilities of research to chemists, physicists and biologists.

The properties of a crystal are determined by the arrangement of its atom in space, its crystalline structure. Scientists use X-ray or neutron diffraction to study crystalline structure when the size of the crystal is more than 10 cubic micrometres. Below this limit, the solid material is considered a powder. Scientists can apply powder diffraction to analyse such a material but this technique is not easy to exploit. Moreover, powder diffraction can only be used for materials with grain sizes of less than three millionths of a cubic micrometre. Due to these limitations, a determination of the structure of new synthetic solids in powder form is not always possible because the crystals are too small.

The teams from the ESRF and the Institute Lavoisier (CNRS/Université de Versailles Saint-Quentin) have used new set-up permitting X-ray diffraction on crystals of a size of one cubic micrometre, a volume a thousand times smaller than that ever attainable before. This new set-up consists of a focussing system for the ESRF beam, coupled with a goniometer, an instrument to position the sample with maximum precision.

The researchers studied the structure of an organic-inorganic hybrid compound (a microporous aluminium carboxylate), which could be used for gas absorption or to encapsulate various organic molecules. This study confirms that the new set-up allows pushing back the limits in crystal dimension accessible to X-ray diffraction. “It is a revolution: what was considered a powder in the past has become a crystal today. Researchers can now bring forward samples left in their cupboards because the sizes had previously prevented their study. Now they will be able to elucidate the structures of these samples, with potentially great scientific advances on the horizon”, explains Thierry Loiseau, from the Institut Lavoisier.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/news/pressreleases/microcrystals/

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>