Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New deep space images of distant strip of sky to be available on Google Sky

04.10.2007
A global project to map a distant strip of the universe is releasing its data today to scientists and the public to be used as part of Google Sky, a new feature of Google Earth.

he international team is taking deep images of an area of sky known as the Extended Groth Strip, an area that covers the width of four full moons, close to the end of the Big Dipper's handle.

The All-wavelength Extended Groth Strip International Survey (AEGIS) is observing the same region of the sky in the radio, infrared, visible, ultraviolet and X-ray regions of the electromagnetic spectrum, with the goal of achieving a greater understanding of the evolution of galaxies over the last 10 billion years.

Academics from Imperial College London, part of the global team, have used the NASA satellite telescope Chandra to take deep images of the area to detect highly energetic X-ray radiation from objects in the sky.

"We are looking back to a time when the universe was more than half its current age and when galaxies were forming most of their stars," says Professor Kirpal Nandra, from the Department of Physics and who is leading the project from Imperial. He added: "With the X-ray images we are looking at black holes, which are at the centre of galaxies, to try to work out how the growth of black holes is linked to the growth of the galaxy itself."

Dr Elise Laird, also at Imperial and one of the lead researchers on the X-ray project, added: "Some theoretical models predict that black holes can actually stop galaxies forming stars altogether. We're now starting to test these models seriously using the AEGIS data."

Images in the optical, infrared and ultraviolet spectrum measure the sizes and shapes of galaxies, their current rates of star formation and the total number of stars each galaxy has already formed.

In the objects seen by Chandra, X-ray radiation has been produced when gas is spiralling into a super massive black hole, like those believed to lie at the centre of almost every galaxy. Many of the X-ray emitting objects lie buried within otherwise normal-looking galaxies. In these X-ray images, the bluest objects are the ones most obscured by gas within their host galaxies.

The AEGIS region has now been surveyed more intensively and with more telescopes than any other region of the sky. All the images will form part of Google Sky, launched earlier this year and will further research into galaxies and how they are formed.

Professor Nandra, explains why they are focusing on this particular area of sky: "It all started in the early days of the Hubble Space Telescope with a program to image a strip of the sky to look for distant galaxies. Over the last few years this has snowballed into a huge international project using the world's most powerful telescopes, both on the ground and in space."

He added: "We've worked hard to convince the rest of the scientific community that this is the best place to look at the evolution of galaxies, and now this hard work's really paying off."

Google Sky will now include data from teams from around the world including Imperial College, University of California, Berkeley, University of California, Santa Cruz, the Space Telescope Science Institute, the W.M. Keck Observatory, Harvard Smithsonian Centre for Astrophysics and the California Institute of Technology.

Users can pan and zoom around all of these pictures of the sky to select individual galaxies for closer inspection. This is the first time that there have been multi wavelength images of the sky released in Google Sky. To view the Google Earth Gallery please visit: http://earth.google.com/gallery/index.html

Abigail Smith | alfa
Further information:
http://earth.google.com/gallery/index.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>