Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extreme star cluster bursts into life in new Hubble image

04.10.2007
NGC 3603 is a prominent star-forming region located in the Carina spiral arm of the Milky Way, about 20,000 light-years away from our Solar System.

This latest image from the NASA/ESA Hubble Space Telescope shows a young star cluster surrounded by a vast region of dust and gas. Most of the bright stars in the image are hot blue stars whose ultraviolet radiation and violent winds have blown out an enormous cavity in the gas and dust enveloping the cluster.

The new Hubble image provides a snapshot in time of many stars with differing masses but similar ages inside the young cluster. This allows for detailed analysis of several types of stars at varying stages in their lives. Astronomers can then compare clusters of different ages with one another and determine which properties (such as temperature and brightness) change as the stars get older.

According to astronomer Dr. Jesús Maíz Apellániz from Instituto de Astrofísica de Andalucía, Spain, who is leading the Hubble investigation, the massive star cluster in NGC 3603 appears to gather the most massive stars at its core. He and his team have discovered that the distribution of different types of stars at the centre of this very dense cluster is similar to that of other young star clusters in the Milky Way.

The team has also found that the three brightest stars in the centre are apparently misleading us into believing that they are more massive objects than theoretical limits allow. These heavyweight stars may actually consist of two or maybe more individual massive stars whose light has blended together. Even with the resolution of Hubble it is not possible to separate the individual stars in each of the three systems. This finding agrees with a recent discovery by Dr. Anthony Moffat from the Université de Montréal, Canada, who used ESO’s Very Large Telescope and Hubble’s infrared NICMOS camera to measure the movements of the individual stars in two of the three systems. Dr. Moffat measured the largest individual mass to be roughly 115 solar masses, which is within the acceptable limits for conventional theory.

The swirling nebula of NGC 3603 contains around 400,000 solar masses of gas. Lurking within this vast cloud are a few Bok globules (seen at the top right corner of the image), named after Bart Bok who first observed them in the 1940s. These are dark clouds of dense dust and gas with masses of about ten to fifty times larger than that of the Sun. They resemble insect cocoons and are undergoing gravitational collapse on their way to form new stars. Bok globules appear to be some of the coldest objects in the Universe.

NGC 3603 was first discovered by Sir John Herschel in 1834. It is known to harbour a blue supergiant star called Sher 25 that can be spotted above and left of the densest part of the cluster. This star is believed to be near the point of exploding as a supernova and is often denoted as the Milky Way counterpart of the predecessor of the now famous supernova SN 1987A.

Lars Christensen | alfa
Further information:
http://www.spacetelescope.org/news/html/heic0715.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>