Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stopping Atoms

04.10.2007
With atoms and molecules in a gas moving at thousands of kilometres per hour, physicists have long sought a way to slow them down to a few kilometres per hour to trap them.

A paper, published today in the Institute of Physics’ New Journal of Physics, demonstrates how a group of physicists from The University of Texas at Austin, US, have found a way to slow down, stop and explore a much wider range of atoms than ever before.

Inspired by the coilgun that was developed by the University’s Center for Electromechanics, the group has developed an "atomic coilgun" that slows and gradually stops atoms with a sequence of pulsed magnetic fields.

Dr. Mark Raizen and his colleagues in Texas ultimately plan on using the gun to trap atomic hydrogen, which he said has been the Rosetta Stone of physics for many years and is the simplest and most abundant atom in the periodic table.

Work on slowing and stopping atoms has been at the forefront of advancement in physics for some time. In 1997, there were three joint-winners for the Nobel Prize in Physics for their combined contribution to laser cooling - a method using laser light to cool gases and keep atoms floating or captured in "atom traps".

These important advances had limited use because they only applied to atoms with 'closed two-level transition', excluding important elements such as hydrogen, iron, nickel and cobalt. In contrast, nearly all elements and a wide range of molecules are affected by magnetic forces, or are paramagnetic, which means that this latest research has much wider applicability.

Professor Raizen said, "Of particular importance are the doors being opened for our understanding of hydrogen. Precision spectroscopy of hydrogen's isotopes, deuterium and tritium, continues to be of great interest to both atomic and nuclear physics. Further study of tritium, as the simplest radioactive element, also serves as an ideal system for the study of Beta decay. "

Having successfully designed and used an 18-coil device to slow a supersonic beam of metastable neon atoms, the team is now developing a 64-stage device to further slow and stop atoms.

Joseph Winters | alfa
Further information:
http://www.iop.org/EJ/abstract/1367-2630/9/10/358

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>