Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanowire generates power by harvesting energy from the environment

As the sizes of sensor networks and mobile devices shrink toward the microscale, and even nanoscale, there is a growing need for suitable power sources. Because even the tiniest battery is too big to be used in nanoscale devices, scientists are exploring nanosize systems that can salvage energy from the environment.

Now, researchers at the University of Illinois have shown that a single nanowire can produce power by harvesting mechanical energy. Made of piezoelectric material, the nanowire generates a voltage when mechanically deformed. To measure the voltage produced by such a tiny wire, however, the researchers first had to build an extremely sensitive and precise mechanical testing stage.

“With the development of this precision testing apparatus, we successfully demonstrated the first controlled measurement of voltage generation from an individual nanowire,” said Min-Feng Yu, a professor of mechanical science and engineering, and a researcher at the university’s Beckman Institute. “The new testing apparatus makes possible other difficult, but important, measurements, as well.”

Yu and graduate students Zhaoyu Wang, Jie Hu, Abhijit Suryavanshi and Kyungsuk Yum describe the measurement, and the measurement device, in a paper accepted for publication in the journal Nano Letters, and posted on the journal’s Web site.

The nanowire was synthesized in the form of a single crystal of barium titanate, an oxide of barium and titanium used as a piezoelectric material in microphones and transducers, and was approximately 280 nanometers in diameter and 15 microns long.

The precision tensile mechanical testing stage is a finger-size device consisting of two coplanar platforms – one movable and one stationary – separated by a 3-micron gap. The movable platform is driven by a single-axis piezoelectric flexure stage with a displacement resolution better than 1 nanometer.

When the researchers’ piezoelectric nanowire was placed across the gap and fastened to the two platforms, the movable platform induced mechanical vibrations in the nanowire. The voltage generated by the nanowire was recorded by high-sensitivity, charge-sensing electronics.

“The electrical energy produced by the nanowire for each vibrational cycle was 0.3 attojoules (less than one quintillionth of a joule),” Yu said. “Accurate measurements this small could not be made on nanowires before.”

While the researchers created mechanical deformations in the nanowire through vibrations caused by external motion, other vibrations in the environment, such as sound waves, should also induce deformations. The researchers’ next step is to accurately measure the piezoelectric nanowire’s response to those acoustic vibrations.

“In addition, because of the fine precision offered by the mechanical testing stage, it should also be possible to quantitatively compare the intrinsic properties of the nanowire to those of the bulk material,” Yu said. “This will allow us to study the scale effect related to electromechanical coupling in nanoscale systems.”

Funding was provided by the National Science Foundation. Part of the work was carried out in the University’s Center for Microanalysis of Materials, which is partially supported by the U.S. Department of Energy.

James E. Kloeppel | University of Illinois
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>